Iterative learning control based on quasi-Newton methods

被引:0
作者
Avrachenkov, KE [1 ]
机构
[1] Univ S Australia, Sch Math, The Levels, SA 5095, Australia
来源
PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4 | 1998年
关键词
iterative learning control; quasi-Newton method; robotic manipulators;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we propose an iterative learning control scheme based on the quasi-Newton method. The iterative learning control is designed to improve the performance of the systems working cyclically. We consider the general type of systems described by continuously differentiable operator acting in Banach spaces. The sufficient conditions for the convergence of quasi-Newton iterative learning algorithm are provided. In the? second part of the paper we apply this general approach to the motion control of robotic manipulators. We also recommend to use the conventional feedback control in addition to the learning control. Finally some simulation results are presented.
引用
收藏
页码:170 / 174
页数:5
相关论文
共 50 条
[31]   Local convergence of quasi-Newton methods under metric regularity [J].
Artacho, F. J. Aragon ;
Belyakov, A. ;
Dontchev, A. L. ;
Lopez, M. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 58 (01) :225-247
[32]   QUASI-NEWTON METHODS FOR MULTIOBJECTIVE OPTIMIZATION PROBLEMS: A SYSTEMATIC REVIEW [J].
Kumar K. ;
Ghosh D. ;
Upadhayay A. ;
Yao J.C. ;
Zhao X. .
Applied Set-Valued Analysis and Optimization, 2023, 5 (02) :291-321
[33]   On exact linesearch quasi-Newton methods for minimizing a quadratic function [J].
Forsgren, Anders ;
Odland, Tove .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 69 (01) :225-241
[34]   The modified quasi-Newton methods for solving unconstrained optimization problems [J].
Dehghani, R. ;
Hosseini, M. M. ;
Bidabadi, N. .
INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2019, 32 (01)
[35]   Quasi-Newton preconditioners for the inexact Newton method [J].
Bergamaschi, L. ;
Bru, R. ;
Martinez, A. ;
Putti, M. .
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 23 :76-87
[36]   A QUASI-NEWTON BUNDLE METHOD BASED ON APPROXIMATE SUBGRADIENTS [J].
Shen Jie ;
Pang Li-Ping .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2007, 23 (1-2) :361-367
[37]   A quasi-Newton bundle method based on approximate subgradients [J].
Shen Jie ;
Pang Li-Ping .
Journal of Applied Mathematics and Computing, 2007, 23 (1-2) :361-367
[38]   Waveform control for magnetic testers using a quasi-Newton method [J].
Yamamoto, Ken-ichi ;
Hanba, Shigeru .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2008, 320 (20) :E539-E541
[39]   Non-asymptotic superlinear convergence of standard quasi-Newton methods [J].
Jin, Qiujiang ;
Mokhtari, Aryan .
MATHEMATICAL PROGRAMMING, 2023, 200 (01) :425-473
[40]   A quasi-Newton modified LP-Newton method [J].
de los Angeles Martinez, Maria ;
Fernandez, Damian .
OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (03) :634-649