Numerical monoids;
tame degree;
catenary degree;
LINEAR DIOPHANTINE PROBLEM;
D O I:
10.1515/FORM.2011.078
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Studying certain combinatorial properties of non-unique factorizations have been a subject of recent literature. Little is known about two combinatorial invariants, namely the catenary degree and the tame degree, even in the case of numerical monoids. In this paper we compute these invariants for a certain class of numerical monoids generated by generalized arithmetic sequences. We also show that the difference between the tame degree and the catenary degree can be arbitrary large even if the number of minimal generators is fixed.
机构:
Karl Franzens Univ Graz, Inst Math & Wissensch Rechnen, A-8010 Graz, AustriaKarl Franzens Univ Graz, Inst Math & Wissensch Rechnen, A-8010 Graz, Austria
Geroldinger, Alfred
Yuan, Pingzhi
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R ChinaKarl Franzens Univ Graz, Inst Math & Wissensch Rechnen, A-8010 Graz, Austria