The catenary and tame degree of numerical monoids generated by generalized arithmetic sequences

被引:23
|
作者
Omidali, Mehdi [1 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Numerical monoids; tame degree; catenary degree; LINEAR DIOPHANTINE PROBLEM;
D O I
10.1515/FORM.2011.078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Studying certain combinatorial properties of non-unique factorizations have been a subject of recent literature. Little is known about two combinatorial invariants, namely the catenary degree and the tame degree, even in the case of numerical monoids. In this paper we compute these invariants for a certain class of numerical monoids generated by generalized arithmetic sequences. We also show that the difference between the tame degree and the catenary degree can be arbitrary large even if the number of minimal generators is fixed.
引用
收藏
页码:627 / 640
页数:14
相关论文
共 50 条
  • [1] The catenary and tame degree of numerical monoids
    Chapman, S. T.
    Garcia-Sanchez, P. A.
    Llena, D.
    FORUM MATHEMATICUM, 2009, 21 (01) : 117 - 129
  • [2] The catenary degrees of elements in numerical monoids generated by arithmetic sequences
    Chapman, Scott T.
    Corrales, Marly
    Miller, Andrew
    Miller, Chris
    Patel, Dhir
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (12) : 5443 - 5452
  • [3] The Catenary and Tame Degree in Finitely Generated Commutative Cancellative Monoids
    S. T. Chapman
    P. A. García-Sánchez
    D. Llena
    V. Ponomarenko
    J. C. Rosales
    manuscripta mathematica, 2006, 120
  • [4] The catenary and tame degree in finitely generated commutative cancellative monoids
    Chapman, S. T.
    Garcia-Sanchez, P. A.
    Llena, D.
    Ponomarenko, V.
    Rosales, J. C.
    MANUSCRIPTA MATHEMATICA, 2006, 120 (03) : 253 - 264
  • [5] Numerical semigroups generated by generalized arithmetic sequences
    Matthews, GL
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (09) : 3459 - 3469
  • [6] On the arithmetic of tame monoids with applications to Krull monoids and Mori domains
    Geroldinger, Alfred
    Kainrath, Florian
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (12) : 2199 - 2218
  • [7] The Monotone Catenary Degree of Krull Monoids
    Geroldinger, Alfred
    Yuan, Pingzhi
    RESULTS IN MATHEMATICS, 2013, 63 (3-4) : 999 - 1031
  • [8] THE CATENARY DEGREE OF KRULL MONOIDS II
    Geroldinger, Alfred
    Zhong, Qinghai
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 98 (03) : 324 - 354
  • [9] The Monotone Catenary Degree of Krull Monoids
    Alfred Geroldinger
    Pingzhi Yuan
    Results in Mathematics, 2013, 63 : 999 - 1031
  • [10] The catenary degree of Krull monoids I
    Geroldinger, Alfred
    Grynkiewicz, David J.
    Schmid, Wolfgang A.
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2011, 23 (01): : 137 - 169