Background: Understanding cellular structure and organization, which plays an important role in biological systems ranging from mechanosensation to neural organization, is a complicated multifactorial problem depending on genetics, environmental factors, and stochastic processes. Isolating these factors necessitates the measurement and sensitive quantification of many samples in a reliable, high-throughput, unbiased manner. In this manuscript we present a pipelined approach using a fully automated framework based on Synchrotron-based X-ray Tomographic Microscopy (SRXTM) for performing a full 3D characterization of millions of substructures. Results: We demonstrate the framework on a genetic study on the femur bones of in-bred mice. We measured 1300 femurs from a F2 cross experiment in mice without the growth hormone (which can confound many of the smaller structural differences between strains) and characterized more than 50 million osteocyte lacunae (cell-sized hollows in the bone). The results were then correlated with genetic markers in a process called quantitative trait localization (QTL). Our findings provide a mapping between regions of the genome (all 19 autosomes) and observable phenotypes which could explain between 8-40% of the variance using between 2-10 loci for each trait. This map shows 4 areas of overlap with previous studies looking at bone strength and 3 areas not previously associated with bone. Conclusions: The mapping of microstructural phenotypes provides a starting point for both structure-function and genetic studies on murine bone structure and the specific loci can be investigated in more detail to identify single gene candidates which can then be translated to human investigations. The flexible infrastructure offers a full spectrum of shape, distribution, and connectivity metrics for cellular networks and can be adapted to a wide variety of materials ranging from plant roots to lung tissue in studies requiring high sample counts and sensitive metrics such as the drug-gene interactions and high-throughput screening.
机构:
Univ Iowa, Dept Ophthalmol & Visual Sci, Iowa City, IA 52242 USA
Univ Iowa, Omics Lab, Iowa City, IA 52242 USAUniv Iowa, Dept Ophthalmol & Visual Sci, Iowa City, IA 52242 USA
Mahajan, Vinit B.
Skeie, Jessica M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Ophthalmol & Visual Sci, Iowa City, IA 52242 USA
Univ Iowa, Omics Lab, Iowa City, IA 52242 USAUniv Iowa, Dept Ophthalmol & Visual Sci, Iowa City, IA 52242 USA
Skeie, Jessica M.
Assefnia, Amir H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Omics Lab, Iowa City, IA 52242 USA
Univ Calif Los Angeles, Sch Dent, Los Angeles, CA 90024 USAUniv Iowa, Dept Ophthalmol & Visual Sci, Iowa City, IA 52242 USA
Assefnia, Amir H.
Mahajan, MaryAnn
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Ophthalmol & Visual Sci, Iowa City, IA 52242 USA
Univ Iowa, Omics Lab, Iowa City, IA 52242 USAUniv Iowa, Dept Ophthalmol & Visual Sci, Iowa City, IA 52242 USA
Mahajan, MaryAnn
Tsang, Stephen H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Omics Lab, Iowa City, IA 52242 USA
Columbia Univ, Coll Phys & Surg, Dept Ophthalmol, Bernard & Shirlee Brown Glaucoma Lab, New York, NY 10027 USAUniv Iowa, Dept Ophthalmol & Visual Sci, Iowa City, IA 52242 USA
Tsang, Stephen H.
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS,
2011,
(57):
机构:
Harvard Med Sch, Boston, MA 02115 USA
Massachusetts Gen Hosp, Boston, MA 02114 USA
Mass Gen Brigham, Boston, MA USAHarvard Med Sch, Boston, MA 02115 USA
Estiri, Hossein
Strasser, Zachary H.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Boston, MA 02115 USA
Massachusetts Gen Hosp, Boston, MA 02114 USA
Mass Gen Brigham, Boston, MA USAHarvard Med Sch, Boston, MA 02115 USA
Strasser, Zachary H.
Murphy, Shawn N.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Boston, MA 02115 USA
Massachusetts Gen Hosp, Boston, MA 02114 USA
Mass Gen Brigham, Boston, MA USAHarvard Med Sch, Boston, MA 02115 USA