KPCA for semantic object extraction in images

被引:52
作者
Li, Jing [2 ]
Li, Xuelong [1 ]
Tao, Dacheng [3 ]
机构
[1] Univ London, Birkbeck Coll, Sch Comp Sci & Informat Syst, London WC1E 7HX, England
[2] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JD, S Yorkshire, England
[3] Hong Kong Polytech Univ, Biometr Res Ctr, Hong Kong, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
segmentation; KPCA; KMeans; kernel KMeans; GMM; kernel GMM;
D O I
10.1016/j.patcog.2008.03.018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we kernelize conventional clustering algorithms from a novel point of view. Based on the fully mathematical proof, we first demonstrate that kernel KMeans (KKMeans) is equivalent to kernel principal component analysis (KPCA) prior to the conventional I(Means algorithm. By using KPCA as a preprocessing step, we also generalize Gaussian mixture model (GMM) to its kernel version, the kernel GMM (KGMM). Consequently, conventional clustering algorithms can be easily kernelized in the linear feature space instead of a nonlinear one. To evaluate the newly established KKMeans and KGMM algorithms, we utilized them to the problem of semantic object extraction (segmentation) of color images. Based on a series of experiments carried out on a set of color images, we indicate that both KKMeans and KGMM can offer more elaborate output than the conventional I(Means and GMM, respectively. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3244 / 3250
页数:7
相关论文
共 23 条
[1]  
[Anonymous], P ACM SIGMM WORKSH B
[2]  
Banerjee A, 2004, SIAM PROC S, P234
[3]  
BILMES J, 1997, ICSITR97021 U BERK
[4]   Blobworld: Image segmentation using expectation-maximization and its application to image querying [J].
Carson, C ;
Belongie, S ;
Greenspan, H ;
Malik, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (08) :1026-1038
[5]   Image database indexing using JPEG coefficients [J].
Climer, S ;
Bhatia, SK .
PATTERN RECOGNITION, 2002, 35 (11) :2479-2488
[6]   Estimation of generalized mixtures and its application in image segmentation [J].
Delignon, Y ;
Marzouki, A ;
Pieczynski, W .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (10) :1364-1375
[7]   Unsupervised segmentation of color-texture regions in images and video [J].
Deng, YN ;
Manjunath, BS .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (08) :800-810
[8]  
Dhillon I. S., 2002, Proceedings 2002 IEEE International Conference on Data Mining. ICDM 2002, P131, DOI 10.1109/ICDM.2002.1183895
[9]  
Dhillon IS, 2001, MASSIVE COMP, V2, P357
[10]  
Dhillon IS, 2004, P 10 ACM SIGKDD INT, P551, DOI [DOI 10.1145/1014052.1014118, 10.1145/1014052.1014118]