How to Capture Active Particles

被引:167
作者
Kaiser, A. [1 ]
Wensink, H. H. [1 ,2 ,3 ]
Loewen, H. [1 ]
机构
[1] Univ Dusseldorf, Inst Theoret Phys Weiche Mat 2, D-40225 Dusseldorf, Germany
[2] Univ Paris 11, Phys Solides Lab, F-91405 Orsay, France
[3] CNRS, F-91405 Orsay, France
关键词
FLUID-DYNAMICS;
D O I
10.1103/PhysRevLett.108.268307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In many applications, it is important to catch collections of autonomously navigating microbes and man-made microswimmers in a controlled way. Using computer simulation of a two-dimensional system of self-propelled rods we show that a static chevron-shaped wall represents an excellent trapping device for self-motile particles. Its catching efficiency can be controlled by varying the apex angle of the trap which defines the sharpness of the cusp. Upon decreasing the angle we find a sequence of three emergent states: no trapping at wide angles followed by a sharp transition towards complete trapping at medium angles and a crossover to partial trapping at small cusp angles. A generic trapping "phase diagram" maps out the conditions at which the capture of active particles at a given density is rendered optimal.
引用
收藏
页数:5
相关论文
共 30 条
  • [1] Self-Starting Micromotors in a Bacterial Bath
    Angelani, Luca
    Di Leonardo, Roberto
    Ruocco, Giancarlo
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (04)
  • [2] Patterns and collective behavior in granular media: Theoretical concepts
    Aranson, Igor S.
    Tsimring, Lev S.
    [J]. REVIEWS OF MODERN PHYSICS, 2006, 78 (02) : 641 - 692
  • [3] Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations
    Cisneros, Luis H.
    Cortez, Ricardo
    Dombrowski, Christopher
    Goldstein, Raymond E.
    Kessler, John O.
    [J]. EXPERIMENTS IN FLUIDS, 2007, 43 (05) : 737 - 753
  • [4] Dhont J.K.G., 1996, An Introduction to Dynamics of Colloids
  • [5] Bacterial ratchet motors
    Di Leonardo, R.
    Angelani, L.
    Dell'Arciprete, D.
    Ruocco, G.
    Iebba, V.
    Schippa, S.
    Conte, M. P.
    Mecarini, F.
    De Angelis, F.
    Di Fabrizio, E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (21) : 9541 - 9545
  • [6] Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering
    Drescher, Knut
    Dunkel, Joern
    Cisneros, Luis H.
    Ganguly, Sujoy
    Goldstein, Raymond E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (27) : 10940 - 10945
  • [7] Microscopic artificial swimmers
    Dreyfus, R
    Baudry, J
    Roper, ML
    Fermigier, M
    Stone, HA
    Bibette, J
    [J]. NATURE, 2005, 437 (7060) : 862 - 865
  • [8] Investigation of bacterial chemotaxis in flow-based microfluidic devices
    Englert, Derek L.
    Manson, Michael D.
    Jayaraman, Arul
    [J]. NATURE PROTOCOLS, 2010, 5 (05) : 864 - 872
  • [9] Various driving mechanisms for generating motion of colloidal particles
    Erbe, A.
    Zientara, M.
    Baraban, L.
    Kreidler, C.
    Leiderer, P.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (40)
  • [10] A wall of funnels concentrates swimming bacteria
    Galajda, Peter
    Keymer, Juan
    Chaikin, Paul
    Austin, Robert
    [J]. JOURNAL OF BACTERIOLOGY, 2007, 189 (23) : 8704 - 8707