A Two-Level Metaheuristic Algorithm for the Job-Shop Scheduling Problem

被引:20
作者
Pongchairerks, Pisut [1 ]
机构
[1] Thai Nichi Inst Technol, Fac Engn, Ind Engn Program, Bangkok 10250, Thailand
关键词
GENETIC ALGORITHM; LOCAL SEARCH; OPTIMIZATION ALGORITHM; EVOLUTION;
D O I
10.1155/2019/8683472
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a novel two-level metaheuristic algorithm, consisting of an upper-level algorithm and a lower-level algorithm, for the job-shop scheduling problem (JSP). The upper-level algorithm is a novel population-based algorithm developed to be a parameter controller for the lower-level algorithm, while the lower-level algorithm is a local search algorithm searching for an optimal schedule in the solution space of parameterized-active schedules. The lower-level algorithm's parameters controlled by the upper-level algorithm consist of the maximum allowed length of idle time, the scheduling direction, the perturbation method to generate an initial solution, and the neighborhood structure. The proposed two-level metaheuristic algorithm, as the combination of the upper-level algorithm and the lower-level algorithm, thus can adapt itself for every single JSP instance.
引用
收藏
页数:11
相关论文
共 47 条
[1]  
[Anonymous], 2001, P WORKSHOP ARTIFICIA
[2]  
Applegate D., 1991, ORSA Journal on Computing, V3, P149, DOI 10.1287/ijoc.3.2.149
[3]  
Beasley J. E., 2004, JOB SHOP SCHEDULING
[4]  
BIERWIRTH C, 1995, OR SPEKTRUM, V17, P87, DOI 10.1007/BF01719250
[5]   Production Scheduling and Rescheduling with Genetic Algorithms [J].
Bierwirth, Christian ;
Mattfeld, Dirk C. .
EVOLUTIONARY COMPUTATION, 1999, 7 (01) :1-17
[6]   The job shop scheduling problem: Conventional and new solution techniques [J].
Blazewicz, J ;
Domschke, W ;
Pesch, E .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1996, 93 (01) :1-33
[7]  
Brys T, 2013, 2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), P1060
[8]   A tutorial survey of job-shop scheduling problems using genetic algorithms .1. Representation [J].
Cheng, RW ;
Gen, M ;
Tsujimura, Y .
COMPUTERS & INDUSTRIAL ENGINEERING, 1996, 30 (04) :983-997
[9]  
Crama Y., 1995, Artificial Neural Networks. An Introduction to ANN Theory and Practice, P157, DOI 10.1007/BFb0027029
[10]  
den Besten M, 2001, LECT NOTES COMPUT SC, V2037, P441