On perfect 2-colorings of the q-ary n-cube

被引:14
作者
Potapov, Vladimir N. [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
关键词
Hypercube; Perfect coloring; Perfect code; MDS code; Equitable partition; Orthogonal array; CODES;
D O I
10.1016/j.disc.2011.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A coloring of a q-ary n-dimensional cube (hypercube) is called perfect if, for every n-tuple x, the collection of the colors of the neighbors of x depends only on the color of x. A Boolean-valued function is called correlation-immune of degree n - m if it takes value 1 the same number of times for each m-dimensional face of the hypercube. Let f = chi(s) he a characteristic function of a subset S of hypercube. In the present paper we prove the inequality rho(S)q(cor(f) + 1) <= alpha(S), where cor(f) is the maximum degree of the correlation immunity of f. alpha(S) is the average number of neighbors in the set S for n-tuples in the complement of a set S, and rho(S) = vertical bar S vertical bar/q(n) is the density of the set S. Moreover, the function f is a perfect coloring if and only if we have an equality in the formula above. Also, we find a new lower bound for the cardinality of components of a perfect coloring and a 1-perfect code in the case q > 2. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1269 / 1272
页数:4
相关论文
共 11 条
  • [1] Bierbrauer J., 1995, J COMB DES, V3, P179, DOI DOI 10.1002/JCD.3180030304
  • [2] DELSARTE P, 1972, PHILIPS RES REP, V27, P272
  • [3] Perfect 2-colorings of a hypercube
    Fon-Der-Flaass, D. G.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (04) : 740 - 745
  • [4] Fon-Der-Flaass DG, 2007, SIB ELECTRON MATH RE, V4, P133
  • [5] Fon-Der-Flaass D.G., 2007, SIBERIAN MATH J, V4, P292
  • [6] Friedman J., 1992, Proceedings 33rd Annual Symposium on Foundations of Computer Science (Cat. No.92CH3188-0), P314, DOI 10.1109/SFCS.1992.267760
  • [7] Krotov D.S., 2008, Quasigr. Relat. Syst., V16, P55
  • [8] Construction of Perfect q-ary Codes by Switchings of Simple Components
    Los, A.
    [J]. PROBLEMS OF INFORMATION TRANSMISSION, 2006, 42 (01) : 30 - 37
  • [9] The Perfect Binary One-Error-Correcting Codes of Length 15: Part II-Properties
    Ostergard, Patric R. J.
    Pottonen, Olli
    Phelps, Kevin T.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (06) : 2571 - 2582
  • [10] Ranks of q-ary 1-perfect codes
    Phelps, KT
    Villanueva, M
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2002, 27 (1-2) : 139 - 144