Sliding-mode perturbation observer-based sliding-mode control design for stability enhancement of multi-machine power systems

被引:14
作者
Yang, B. [1 ]
Yu, T. [2 ]
Shu, H. C. [1 ]
Yao, W. [3 ]
Jiang, L. [4 ]
机构
[1] Kunming Univ Sci & Technol, Fac Elect Power Engn, Kunming, Yunnan, Peoples R China
[2] South China Univ Technol, Sch Elect Power Engn, Guangzhou 510641, Guangdong, Peoples R China
[3] Huazhong Univ Sci & Technol, State Key Lab Adv Electromagnet Engn & Technol, Sch Elect & Elect Engn, Wuhan, Hubei, Peoples R China
[4] Univ Liverpool, Dept Elect Engn & Elect, Liverpool, Merseyside, England
基金
中国国家自然科学基金;
关键词
Sliding-mode control; perturbation observer; multi-machine power system; stability enhancement; ADAPTIVE PASSIVE CONTROL; AREA DAMPING CONTROLLER; LOAD FREQUENCY CONTROL; EXCITATION CONTROL; NONLINEAR-SYSTEMS; OUTPUT-FEEDBACK; OSCILLATIONS; IMPROVEMENT; EXTRACTION; STATE;
D O I
10.1177/0142331218783240
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the design of a sliding-mode perturbation observer-based sliding-mode control for stability enhancement of multi-machine power systems. The combinatorial effect of nonlinearities, parameter uncertainties, unmodelled dynamics and time-varying external disturbances is aggregated into a perturbation, which is rapidly estimated by a sliding-mode state and perturbation observer and then fully compensated by a sliding-mode controller in real time. The attractiveness of the sliding surface is analysed theoretically in the context of the Lyapunov criterion. The proposed control does not require an accurate system model and only one state measurement is needed. In addition, an over-conservative control effort can be effectively avoided via perturbation compensation. Simulation results for a three-machine power system and the New England power system verify the effectiveness of the proposed approach.
引用
收藏
页码:1418 / 1434
页数:17
相关论文
共 44 条
[1]   A neural network based adaptive sliding mode controller: Application to a power system stabilizer [J].
Al-Duwaish, Hussain N. ;
Al-Hamouz, Zakariya M. .
ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (02) :1533-1538
[2]   Excitation control of a synchronous generator using a novel fractional-order controller [J].
Asadollahi, Mostafa ;
Ghiasi, Amir Rikhtegar ;
Dehghani, Hassan .
IET GENERATION TRANSMISSION & DISTRIBUTION, 2015, 9 (15) :2255-2260
[3]   PRACTICAL METHOD FOR THE DIRECT ANALYSIS OF TRANSIENT STABILITY [J].
ATHAY, T ;
PODMORE, R ;
VIRMANI, S .
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1979, 98 (02) :573-584
[4]   Transient stability improvement through excitation control [J].
Bazanella, AS ;
Conceiçao, CL .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2004, 14 (9-10) :891-910
[5]   Benchmark Models for the Analysis and Control of Small-Signal Oscillatory Dynamics in Power Systems [J].
Canizares, C. ;
Fernandes, T. ;
Geraldi, E., Jr. ;
Gerin-Lajoie, L. ;
Gibbard, M. ;
Hiskens, I. ;
Kersulis, J. ;
Kuiava, R. ;
Lima, L. ;
DeMarco, F. ;
Martins, N. ;
Pal, B. C. ;
Piardi, A. ;
Ramos, R. ;
dos Santos, J. ;
Silva, D. ;
Singh, A. K. ;
Tamimi, B. ;
Vowles, D. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (01) :715-722
[6]   Adaptive nonlinear output feedback for transient stabilization and voltage regulation of power generators with unknown parameters [J].
Damm, G ;
Marino, R ;
Lamnabhi-Lagarrigue, F .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2004, 14 (9-10) :833-855
[7]   Feedback-linearization and feedback-feedforward decentralized control for multimachine power system [J].
De Tuglie, Enrico ;
Iannone, Silvio Marcello ;
Torelli, Francesco .
ELECTRIC POWER SYSTEMS RESEARCH, 2008, 78 (03) :382-391
[8]   Power system stabilizer based on pointwise min-norm control law [J].
Erceg, Igor ;
Sumina, Damir ;
Tusun, Stjepan ;
Kutija, Martina .
ELECTRIC POWER SYSTEMS RESEARCH, 2017, 143 :215-224
[9]   High-order sliding-mode observer for linear time-varying systems with unknown inputs [J].
Galvan-Guerra, R. ;
Fridman, L. ;
Davila, J. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2017, 27 (14) :2338-2356
[10]   Active disturbance rejection control for nonlinear fractional-order systems [J].
Gao, Zhe .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (04) :876-892