The ELFIN Mission

被引:80
作者
Angelopoulos, V [1 ,2 ]
Tsai, E. [1 ,2 ]
Bingley, L. [1 ,2 ]
Shaffer, C. [1 ,3 ]
Turner, D. L. [1 ,4 ]
Runov, A. [1 ,2 ]
Li, W. [1 ,2 ,5 ,6 ]
Liu, J. [1 ,2 ]
Artemyev, A., V [1 ,2 ]
Zhang, X-J [1 ,2 ]
Strangeway, R. J. [1 ,2 ]
Wirz, R. E. [7 ]
Shprits, Y. Y. [1 ,8 ]
Sergeev, V. A. [9 ]
Caron, R. P. [1 ,2 ]
Chung, M. [1 ,4 ]
Cruce, P. [1 ,10 ]
Greer, W. [1 ,2 ]
Grimes, E. [1 ,2 ]
Hector, K. [1 ,2 ,11 ]
Lawson, M. J. [1 ,2 ]
Leneman, D. [1 ,2 ]
Masongsong, E., V [1 ,2 ]
Russell, C. L. [1 ,2 ]
Wilkins, C. [1 ,2 ]
Hinkley, D. [12 ]
Blake, J. B. [12 ]
Adair, N. [1 ,2 ,13 ]
Allen, M. [1 ,2 ,10 ]
Anderson, M. [1 ,2 ,14 ]
Arreola-Zamora, M. [1 ,2 ]
Artinger, J. [1 ,2 ,15 ]
Asher, J. [1 ,2 ,4 ]
Branchevsky, D. [1 ,2 ,12 ]
Capitelli, M. R. [1 ,2 ,13 ]
Castro, R. [1 ,2 ,11 ]
Chao, G. [1 ,2 ,16 ]
Chung, N. [1 ,2 ,17 ]
Cliffe, M. [1 ,2 ,18 ]
Colton, K. [1 ,2 ,19 ]
Costello, C. [1 ,2 ,20 ]
Depe, D. [1 ,2 ,21 ]
Domae, B. W. [1 ,2 ,21 ]
Eldin, S. [1 ,2 ,21 ]
Fitzgibbon, L. [1 ,2 ,3 ]
Flemming, A. [1 ,2 ,10 ]
Fox, I [1 ,2 ,7 ]
Frederick, D. M. [1 ,2 ,13 ]
Gilbert, A. [1 ,2 ,21 ]
Gildemeister, A. [1 ,2 ,10 ]
机构
[1] Univ Calif Los Angeles, Earth Planetary & Space Sci Dept, Los Angeles, CA 90095 USA
[2] Univ Calif San Diego, Inst Geophys & Planetary Phys, San Diego, CA 92103 USA
[3] Tyvak Nanosatellite Syst Inc, Irvine, CA 92618 USA
[4] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA
[5] Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA
[6] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA
[7] Univ Calif Los Angeles, Henry Samueli Sch Engn, Mech & Aerosp Engn Dept, Los Angeles, CA 90095 USA
[8] GFZ German Res Ctr Geosci, D-14473 Potsdam, Germany
[9] St Petersburg State Univ, St Petersburg 199034, Russia
[10] Northrop Grumman Aerosp Syst, Redondo Beach, CA 90278 USA
[11] Raytheon Space & Airborne Syst, El Segundo, CA 90245 USA
[12] Aerosp Corp, El Segundo, CA 90245 USA
[13] Millenium Space Syst, El Segundo, CA 90245 USA
[14] Aptiv, Agoura Hills, CA 91301 USA
[15] Univ Calif Los Angeles, Phys & Astron Dept, Los Angeles, CA 90095 USA
[16] Boeing Co, Long Beach, CA 90808 USA
[17] SF Motors, Santa Clara, CA 95054 USA
[18] SpaceX, Hawthorne, CA 90250 USA
[19] Planet Labs Inc, San Francisco, CA 94107 USA
[20] Univ Calif Los Angeles, Henry Samueli Sch Engn, Comp Sci Dept, Los Angeles, CA 90095 USA
[21] Univ Calif Los Angeles, Henry Samueli Sch Engn, Elect & Comp Engn Dept, Los Angeles, CA 90095 USA
[22] Jet Prop Lab, Pasadena, CA 91109 USA
[23] Mercedes Benz Res & Dev North Amer, Long Beach, CA 90810 USA
[24] Epic Syst Corp, Verona, WI 53593 USA
[25] Calif State Polytech Univ Pomona, Pomona, CA 91768 USA
[26] Univ Calif Los Angeles, Econ Dept, Los Angeles, CA 90095 USA
[27] Experior Labs, Oxnard, CA 93033 USA
[28] Univ Calif Los Angeles, Math Dept, Los Angeles, CA 90095 USA
[29] Qualcomm, San Diego, CA 92121 USA
关键词
CubeSat; Van Allen radiation belts; EMIC; electromagnetic ion cyclotron waves; Magnetosphere; Particle precipitation; Auroral; Loss cone; Electron; Ionosphere; Pitch angle scattering; Energetic particle detector; Fluxgate magnetometer; UCLA; RADIATION BELT ELECTRONS; PITCH-ANGLE SCATTERING; RELATIVISTIC ELECTRONS; EMIC WAVES; GEOMAGNETIC STORMS; PRECIPITATION; PLASMA; MICROBURSTS; BOUNDARY; LOSSES;
D O I
10.1007/s11214-020-00721-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Electron Loss and Fields Investigation with a Spatio-Temporal Ambiguity-Resolving option (ELFIN-STAR, or heretoforth simply: ELFIN) mission comprises two identical 3-Unit (3U) CubeSats on a polar (similar to 93(circle)inclination), nearly circular, low-Earth (similar to 450 km altitude) orbit. Launched on September 15, 2018, ELFIN is expected to have a >2.5 year lifetime. Its primary science objective is to resolve the mechanism of storm-time relativistic electron precipitation, for which electromagnetic ion cyclotron (EMIC) waves are a prime candidate. From its ionospheric vantage point, ELFIN uses its unique pitch-angle-resolving capability to determine whether measured relativistic electron pitch-angle and energy spectra within the loss cone bear the characteristic signatures of scattering by EMIC waves or whether such scattering may be due to other processes. Pairing identical ELFIN satellites with slowly-variable along-track separation allows disambiguation of spatial and temporal evolution of the precipitation over minutes-to-tens-of-minutes timescales, faster than the orbit period of a single low-altitude satellite (T-orbit similar to 90 min). Each satellite carries an energetic particle detector for electrons (EPDE) that measures 50 keV to 5 MeV electrons with Delta E/E < 40% and a fluxgate magnetometer (FGM) on a similar to 72 cm boom that measures magnetic field waves (e.g., EMIC waves) in the range from DC to 5 Hz Nyquist (nominally) with <0.3 nT/sqrt(Hz) noise at 1 Hz. The spinning satellites (T-spin similar to 3 s) are equipped with magnetorquers (air coils) that permit spin-up or -down and reorientation maneuvers. Using those, the spin axis is placed normal to the orbit plane (nominally), allowing full pitch-angle resolution twice per spin. An energetic particle detector for ions (EPDI) measures 250 keV - 5 MeV ions, addressing secondary science. Funded initially by CalSpace and the University Nanosat Program, ELFIN was selected for flight with joint support from NSF and NASA between 2014 and 2018 and launched by the ELaNa XVIII program on a Delta II rocket (with IceSatII as the primary). Mission operations are currently funded by NASA. Working under experienced UCLA mentors, with advice from The Aerospace Corporation and NASA personnel, more than 250 undergraduates have matured the ELFIN implementation strategy; developed the instruments, satellite, and ground systems and operate the two satellites. ELFIN's already high potential for cutting-edge science return is compounded by concurrent equatorial Heliophysics missions (THEMIS, Arase, Van Allen Probes, MMS) and ground stations. ELFIN's integrated data analysis approach, rapid dissemination strategies via the SPace Environment Data Analysis System (SPEDAS), and data coordination with the Heliophysics/Geospace System Observatory (H/GSO) optimize science yield, enabling the widest community benefits. Several storm-time events have already been captured and are presented herein to demonstrate ELFIN's data analysis methods and potential. These form the basis of on-going studies to resolve the primary mission science objective. Broad energy precipitation events, precipitation bands, and microbursts, clearly seen both at dawn and dusk, extend from tens of keV to >1 MeV. This broad energy range of precipitation indicates that multiple waves are providing scattering concurrently. Many observed events show significant backscattered fluxes, which in the past were hard to resolve by equatorial spacecraft or non-pitch-angle-resolving ionospheric missions. These observations suggest that the ionosphere plays a significant role in modifying magnetospheric electron fluxes and wave-particle interactions. Routine data captures starting in February 2020 and lasting for at least another year, approximately the remainder of the mission lifetime, are expected to provide a very rich dataset to address questions even beyond the primary mission science objective.
引用
收藏
页数:45
相关论文
共 98 条
  • [11] Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event
    Bortnik, J.
    Thorne, R. M.
    O'Brien, T. P.
    Green, J. C.
    Strangeway, R. J.
    Shprits, Y. Y.
    Baker, D. N.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A12)
  • [12] The unexpected origin of plasmaspheric hiss from discrete chorus emissions
    Bortnik, Jacob
    Thorne, Richard M.
    Meredith, Nigel P.
    [J]. NATURE, 2008, 452 (7183) : 62 - 66
  • [13] Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm
    Brautigam, DH
    Albert, JM
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A1) : 291 - 309
  • [14] Global-scale coherence modulation of radiation-belt electron loss from plasmaspheric hiss
    Breneman, A. W.
    Halford, A.
    Millan, R.
    McCarthy, M.
    Fennell, J.
    Sample, J.
    Woodger, L.
    Hospodarsky, G.
    Wygant, J. R.
    Cattell, C. A.
    Goldstein, J.
    Malaspina, D.
    Kletzing, C. A.
    [J]. NATURE, 2015, 523 (7559) : 193 - U321
  • [15] REGULAR AND CHAOTIC CHARGED-PARTICLE MOTION IN MAGNETOTAIL-LIKE FIELD REVERSALS .1. BASIC THEORY OF TRAPPED MOTION
    BUCHNER, J
    ZELENYI, LM
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1989, 94 (A9): : 11821 - 11842
  • [16] Direct Observation of Subrelativistic Electron Precipitation Potentially Driven by EMIC Waves
    Capannolo, L.
    Li, W.
    Ma, Q.
    Chen, L.
    Shen, X-C
    Spence, H. E.
    Sample, J.
    Johnson, A.
    Shumko, M.
    Klumpar, D. M.
    Redmon, R. J.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (22) : 12711 - 12721
  • [17] Caron R., 2020, ENERGETIC PART UNPUB
  • [18] Pitch Angle Scattering and Loss of Radiation Belt Electrons in Broadband Electromagnetic Waves
    Chaston, C. C.
    Bonnell, J. W.
    Halford, A. J.
    Reeves, G. D.
    Baker, D. N.
    Kletzing, C. A.
    Wygant, J. R.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (18) : 9344 - 9352
  • [19] The controlling effect of ion temperature on EMIC wave excitation and scattering
    Chen, Lunjin
    Thorne, Richard M.
    Bortnik, Jacob
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2011, 38
  • [20] A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions
    Chisham, G.
    Lester, M.
    Milan, S. E.
    Freeman, M. P.
    Bristow, W. A.
    Grocott, A.
    McWilliams, K. A.
    Ruohoniemi, J. M.
    Yeoman, T. K.
    Dyson, P. L.
    Greenwald, R. A.
    Kikuchi, T.
    Pinnock, M.
    Rash, J. P. S.
    Sato, N.
    Sofko, G. J.
    Villain, J.-P.
    Walker, A. D. M.
    [J]. SURVEYS IN GEOPHYSICS, 2007, 28 (01) : 33 - 109