Theories of Error Back-Propagation in the Brain

被引:244
作者
Whittington, James C. R. [1 ,2 ]
Bogacz, Rafal [1 ]
机构
[1] Univ Oxford, Nuffield Dept Clin Neurosci, MRC Brain Network Dynam Unit, Oxford OX3 9DU, England
[2] Univ Oxford, Wellcome Ctr Integrat Neuroimaging, Ctr Funct Magnet Resonance Imaging Brain, Oxford OX3 9DU, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
SYNAPTIC PLASTICITY; LEARNING ALGORITHM; NEURAL-NETWORKS; SITES; REINFORCEMENT; REPRESENTATIONS; APPROXIMATION; FEEDFORWARD; INHIBITION; ACTIVATION;
D O I
10.1016/j.tics.2018.12.005
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
This review article summarises recently proposed theories on how neural circuits in the brain could approximate the error back-propagation algorithm used by artificial neural networks. Computational models implementing these theories achieve learning as efficient as artificial neural networks, but they use simple synaptic plasticity rules based on activity of presynaptic and postsynaptic neurons. The models have similarities, such as including both feedforward and feedback connections, allowing information about error to propagate throughout the network. Furthermore, they incorporate experimental evidence on neural connectivity, responses, and plasticity. These models provide insights on how brain networks might be organised such that modification of synaptic weights on multiple levels of cortical hierarchy leads to improved performance on tasks.
引用
收藏
页码:235 / 250
页数:16
相关论文
共 72 条
[51]  
Sacramento J, 2018, ADV NEUR IN, V31
[52]  
Scellier B., 2017, ARXIV171108416
[53]   Equilibrium Propagation: Bridging the Gap Between Energy-Based Models and Backpropagation [J].
Scellier, Benjamin ;
Bengio, Yoshua .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2017, 11
[54]   Somato-dendritic Synaptic Plasticity and Error-backpropagation in Active Dendrites [J].
Schiess, Mathieu ;
Urbanczik, Robert ;
Senn, Walter .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (02)
[55]   A neural substrate of prediction and reward [J].
Schultz, W ;
Dayan, P ;
Montague, PR .
SCIENCE, 1997, 275 (5306) :1593-1599
[56]   Learning in spiking neural networks by reinforcement of stochastic synaptic transmission [J].
Seung, HS .
NEURON, 2003, 40 (06) :1063-1073
[57]   Disynaptic inhibition between neocortical pyramidal cells mediated by martinotti cells [J].
Silberberg, Gilad ;
Markram, Henry .
NEURON, 2007, 53 (05) :735-746
[58]   Mastering the game of Go with deep neural networks and tree search [J].
Silver, David ;
Huang, Aja ;
Maddison, Chris J. ;
Guez, Arthur ;
Sifre, Laurent ;
van den Driessche, George ;
Schrittwieser, Julian ;
Antonoglou, Ioannis ;
Panneershelvam, Veda ;
Lanctot, Marc ;
Dieleman, Sander ;
Grewe, Dominik ;
Nham, John ;
Kalchbrenner, Nal ;
Sutskever, Ilya ;
Lillicrap, Timothy ;
Leach, Madeleine ;
Kavukcuoglu, Koray ;
Graepel, Thore ;
Hassabis, Demis .
NATURE, 2016, 529 (7587) :484-+
[59]   Sensory cortex is optimized for prediction of future input [J].
Singer, Yosef ;
Teramoto, Yayoi ;
Willmore, Ben D. B. ;
Schnupp, Jan W. H. ;
King, Andrew J. ;
Harper, Nicol S. .
ELIFE, 2018, 7
[60]   Highly nonrandom features of synaptic connectivity in local cortical circuits [J].
Song, S ;
Sjöstrom, PJ ;
Reigl, M ;
Nelson, S ;
Chklovskii, DB .
PLOS BIOLOGY, 2005, 3 (03) :507-519