Theories of Error Back-Propagation in the Brain

被引:228
作者
Whittington, James C. R. [1 ,2 ]
Bogacz, Rafal [1 ]
机构
[1] Univ Oxford, Nuffield Dept Clin Neurosci, MRC Brain Network Dynam Unit, Oxford OX3 9DU, England
[2] Univ Oxford, Wellcome Ctr Integrat Neuroimaging, Ctr Funct Magnet Resonance Imaging Brain, Oxford OX3 9DU, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
SYNAPTIC PLASTICITY; LEARNING ALGORITHM; NEURAL-NETWORKS; SITES; REINFORCEMENT; REPRESENTATIONS; APPROXIMATION; FEEDFORWARD; INHIBITION; ACTIVATION;
D O I
10.1016/j.tics.2018.12.005
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
This review article summarises recently proposed theories on how neural circuits in the brain could approximate the error back-propagation algorithm used by artificial neural networks. Computational models implementing these theories achieve learning as efficient as artificial neural networks, but they use simple synaptic plasticity rules based on activity of presynaptic and postsynaptic neurons. The models have similarities, such as including both feedforward and feedback connections, allowing information about error to propagate throughout the network. Furthermore, they incorporate experimental evidence on neural connectivity, responses, and plasticity. These models provide insights on how brain networks might be organised such that modification of synaptic weights on multiple levels of cortical hierarchy leads to improved performance on tasks.
引用
收藏
页码:235 / 250
页数:16
相关论文
共 72 条
  • [1] Synaptic plasticity: taming the beast
    Abbott, L. F.
    Nelson, Sacha B.
    [J]. NATURE NEUROSCIENCE, 2000, 3 (11) : 1178 - 1183
  • [2] ACKLEY DH, 1985, COGNITIVE SCI, V9, P147
  • [3] [Anonymous], 2017, ARXIV171106756
  • [4] [Anonymous], 2018, ARXIV180804873
  • [5] [Anonymous], 2014, ARXIV14077906
  • [6] Visuomotor Coupling Shapes the Functional Development of Mouse Visual Cortex
    Attinger, Alexander
    Wang, Bo
    Keller, Georg B.
    [J]. CELL, 2017, 169 (07) : 1291 - +
  • [7] A theory of local learning, the learning channel, and the optimality of backpropagation
    Baldi, Pierre
    Sadowski, Peter
    [J]. NEURAL NETWORKS, 2016, 83 : 51 - 74
  • [8] Contrastive Learning and Neural Oscillations
    Baldi, Pierre
    Pineda, Fernando
    [J]. NEURAL COMPUTATION, 1991, 3 (04) : 526 - 545
  • [9] Balduzzi D, 2015, AAAI CONF ARTIF INTE, P485
  • [10] Vector-based navigation using grid-like representations in artificial agents
    Banino, Andrea
    Barry, Caswell
    Uria, Benigno
    Blundell, Charles
    Lillicrap, Timothy
    Mirowski, Piotr
    Pritzel, Alexander
    Chadwick, Martin J.
    Degris, Thomas
    Modayil, Joseph
    Wayne, Greg
    Soyer, Hubert
    Viola, Fabio
    Zhang, Brian
    Goroshin, Ross
    Rabinowitz, Neil
    Pascanu, Razvan
    Beattie, Charlie
    Petersen, Stig
    Sadik, Amir
    Gaffney, Stephen
    King, Helen
    Kavukcuoglu, Koray
    Hassabis, Demis
    Hadsell, Raia
    Kumaran, Dharshan
    [J]. NATURE, 2018, 557 (7705) : 429 - +