Exponent of Convergence of a Sequence of Ergodic Averages

被引:3
作者
Podvigin, I., V [1 ]
机构
[1] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk 630090, Russia
关键词
Birkhoff's ergodic theorem; rates of convergence in ergodic theorems; the exponent of convergence; Tanny-Wos spaces; LAW;
D O I
10.1134/S000143462207029X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a sequence of ergodic averages, we consider its exponent of convergence, which is a numerical characteristic of two-sided power-law estimates of the rate of pointwise convergence of this sequence. Criteria for the boundary values 1 and infinity of the exponent of convergence are given. Functions cohomologous to zero with a given the exponent of convergence are also described.
引用
收藏
页码:271 / 280
页数:10
相关论文
共 21 条
[1]  
Adams T., 2019, EXISTENCE NONEXISTEN
[2]   Joint coboundaries [J].
Adams, Terry ;
Rosenblatt, Joseph .
DYNAMICAL SYSTEMS, ERGODIC THEORY, AND PROBABILITY: IN MEMORY OF KOLYA CHERNOV, 2017, 698 :5-33
[3]  
[Anonymous], 1974, Uniform Distribution of Sequences
[4]   COUNTEREXAMPLES IN ERGODIC THEORY AND NUMBER THEORY [J].
DELJUNCO, A ;
ROSENBLATT, J .
MATHEMATISCHE ANNALEN, 1979, 245 (03) :185-197
[5]   Fractional Poisson equations and ergodic theorems for fractional coboundaries [J].
Derriennic, Y ;
Lin, M .
ISRAEL JOURNAL OF MATHEMATICS, 2001, 123 (1) :93-130
[6]   ERGODIC THEOREM, REVERSIBILITY AND THE FILLING SCHEME [J].
Derriennic, Yves .
COLLOQUIUM MATHEMATICUM, 2010, 118 (02) :599-608
[8]  
[Качуровский Александр Григорьевич Kachurovskii A.G.], 2021, [Математические труды, Matematicheskie trudy, Matematicheskie trudy], V24, P65, DOI 10.33048/mattrudy.2021.24.205
[9]   Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem [J].
Kachurovskii, A. G. ;
Podvigin, I. V. .
MATHEMATICAL NOTES, 2019, 106 (1-2) :52-62
[10]   The rate of convergence in ergodic theorems [J].
Kachurovskii, AG .
RUSSIAN MATHEMATICAL SURVEYS, 1996, 51 (04) :653-703