Complete bounded embedded complex curves in C2

被引:11
作者
Alarcon, Antonio [1 ,2 ]
Lopez, Francisco J. [1 ,2 ]
机构
[1] Univ Granada, Dept Geometria & Topol, Campus Fuentenueva S-N, E-18071 Granada, Spain
[2] Univ Granada, Inst Matemat IEMath GR, Campus Fuentenueva S-N, E-18071 Granada, Spain
关键词
Riemann surfaces; complex curves; complete holomorphic embeddings; COMPLETE MINIMAL-SURFACES; HOLOMORPHIC EMBEDDINGS; CONJECTURES; DISCS;
D O I
10.4171/JEMS/625
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that any convex domain of C-2 carries properly embedded complete complex curves. In particular, we give the first examples of complete bounded embedded complex curves in C-2.
引用
收藏
页码:1675 / 1705
页数:31
相关论文
共 29 条
[1]  
Alarcon A., 2015, PREPRINT
[2]  
Alarcón A, 2013, MATH ANN, V355, P429, DOI 10.1007/s00208-012-0790-4
[3]   Every bordered Riemann surface is a complete proper curve in a ball [J].
Alarcon, Antonio ;
Forstneric, Franc .
MATHEMATISCHE ANNALEN, 2013, 357 (03) :1049-1070
[4]   Proper Holomorphic Embeddings of Riemann Surfaces with Arbitrary Topology into C2 [J].
Alarcon, Antonio ;
Lopez, Francisco J. .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (04) :1794-1805
[5]  
Alarcón A, 2013, CALC VAR PARTIAL DIF, V47, P227, DOI 10.1007/s00526-012-0517-0
[6]   Complete minimal surfaces and harmonic functions [J].
Alarcon, Antonio ;
Fernandez, Isabel ;
Lopez, Francisco J. .
COMMENTARII MATHEMATICI HELVETICI, 2012, 87 (04) :891-904
[7]   Complete minimal surfaces in R3 with a prescribed coordinate function [J].
Alarcon, Antonio ;
Fernandez, Isabel .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 :S9-S15
[8]  
[Anonymous], ERGEB MATH GRENZGEB
[9]  
Bell S.R., 1990, ENCYCL MATH SCI, P1
[10]   The Calabi-Yau conjectures for embedded surfaces [J].
Colding, Tobias H. ;
Minicozzi, William P., II .
ANNALS OF MATHEMATICS, 2008, 167 (01) :211-243