Back stress strengthening and strain hardening in gradient structure

被引:1045
作者
Yang, Muxin [1 ]
Pan, Yue [1 ,4 ]
Yuan, Fuping [1 ]
Zhu, Yuntian [2 ,3 ]
Wu, Xiaolei [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Nonlinear Mech, Inst Mech, 15 Beisihuan West Rd, Beijing 100190, Peoples R China
[2] North Carolina State Univ, Dept Mat Sci & Engn, Campus Box 7919, Raleigh, NC 27695 USA
[3] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, 200 Xiaolingwei, Nanjing 210094, Jiangsu, Peoples R China
[4] Tongji Univ, Sch Aerosp Engn & Appl Mech, 1239 Siping Rd, Shanghai 200092, Peoples R China
来源
MATERIALS RESEARCH LETTERS | 2016年 / 4卷 / 03期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Back Stress; Geometrically Necessary Dislocations; Work Hardening; Ductility; Gradient Structure; HYSTERESIS LOOPS; SURFACE-LAYER; GRAIN-SIZE; NANOCRYSTALLINE ALLOYS; METALLIC MATERIALS; MARTENSITIC STEEL; PART II; PLASTICITY; BEHAVIOR; TEMPERATURE;
D O I
10.1080/21663831.2016.1153004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report significant back stress strengthening and strain hardening in gradient structured (GS) interstitial-free (IF) steel. Back stress is long-range stress caused by the pileup of geometrically necessary dislocations (GNDs). A simple equation and a procedure are developed to calculate back stress basing on its formation physics from the tensile unloading-reloading hysteresis loop. The gradient structure has mechanical incompatibility due to its grain size gradient. This induces strain gradient, which needs to be accommodated by GNDs. Back stress not only raises the yield strength but also significantly enhances strain hardening to increase the ductility. [GRAPHICS] .
引用
收藏
页码:145 / 151
页数:7
相关论文
共 37 条
[31]   Retaining the Nano in Nanocrystalline Alloys [J].
Weertman, Julia R. .
SCIENCE, 2012, 337 (6097) :921-922
[32]   Evading the strength- ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J].
Wei, Yujie ;
Li, Yongqiang ;
Zhu, Lianchun ;
Liu, Yao ;
Lei, Xianqi ;
Wang, Gang ;
Wu, Yanxin ;
Mi, Zhenli ;
Liu, Jiabin ;
Wang, Hongtao ;
Gao, Huajian .
NATURE COMMUNICATIONS, 2014, 5
[33]   Synergetic Strengthening by Gradient Structure [J].
Wu, X. L. ;
Jiang, P. ;
Chen, L. ;
Zhang, J. F. ;
Yuan, F. P. ;
Zhu, Y. T. .
MATERIALS RESEARCH LETTERS, 2014, 2 (04) :185-191
[34]   Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J].
Wu, Xiaolei ;
Yang, Muxin ;
Yuan, Fuping ;
Wu, Guilin ;
Wei, Yujie ;
Huang, Xiaoxu ;
Zhu, Yuntian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (47) :14501-14505
[35]   Extraordinary strain hardening by gradient structure [J].
Wu, XiaoLei ;
Jiang, Ping ;
Chen, Liu ;
Yuan, Fuping ;
Zhu, Yuntian T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (20) :7197-7201
[36]   The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper [J].
Zhang, K ;
Weertman, JR ;
Eastman, JA .
APPLIED PHYSICS LETTERS, 2004, 85 (22) :5197-5199
[37]   Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures [J].
Zhang, K ;
Weertman, JR ;
Eastman, JA .
APPLIED PHYSICS LETTERS, 2005, 87 (06)