Back stress strengthening and strain hardening in gradient structure

被引:1045
作者
Yang, Muxin [1 ]
Pan, Yue [1 ,4 ]
Yuan, Fuping [1 ]
Zhu, Yuntian [2 ,3 ]
Wu, Xiaolei [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Nonlinear Mech, Inst Mech, 15 Beisihuan West Rd, Beijing 100190, Peoples R China
[2] North Carolina State Univ, Dept Mat Sci & Engn, Campus Box 7919, Raleigh, NC 27695 USA
[3] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, 200 Xiaolingwei, Nanjing 210094, Jiangsu, Peoples R China
[4] Tongji Univ, Sch Aerosp Engn & Appl Mech, 1239 Siping Rd, Shanghai 200092, Peoples R China
来源
MATERIALS RESEARCH LETTERS | 2016年 / 4卷 / 03期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Back Stress; Geometrically Necessary Dislocations; Work Hardening; Ductility; Gradient Structure; HYSTERESIS LOOPS; SURFACE-LAYER; GRAIN-SIZE; NANOCRYSTALLINE ALLOYS; METALLIC MATERIALS; MARTENSITIC STEEL; PART II; PLASTICITY; BEHAVIOR; TEMPERATURE;
D O I
10.1080/21663831.2016.1153004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report significant back stress strengthening and strain hardening in gradient structured (GS) interstitial-free (IF) steel. Back stress is long-range stress caused by the pileup of geometrically necessary dislocations (GNDs). A simple equation and a procedure are developed to calculate back stress basing on its formation physics from the tensile unloading-reloading hysteresis loop. The gradient structure has mechanical incompatibility due to its grain size gradient. This induces strain gradient, which needs to be accommodated by GNDs. Back stress not only raises the yield strength but also significantly enhances strain hardening to increase the ductility. [GRAPHICS] .
引用
收藏
页码:145 / 151
页数:7
相关论文
共 37 条
[1]   DEFORMATION OF PLASTICALLY NON-HOMOGENEOUS MATERIALS [J].
ASHBY, MF .
PHILOSOPHICAL MAGAZINE, 1970, 21 (170) :399-&
[2]   Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging [J].
Calcagnotto, Marion ;
Adachi, Yoshitaka ;
Ponge, Dirk ;
Raabe, Dierk .
ACTA MATERIALIA, 2011, 59 (02) :658-670
[3]   Design of Stable Nanocrystalline Alloys [J].
Chookajorn, Tongjai ;
Murdoch, Heather A. ;
Schuh, Christopher A. .
SCIENCE, 2012, 337 (6097) :951-954
[4]  
Cottrell AH., 1953, DISLOCATIONS PLASTIC, DOI DOI 10.1119/1.1933704
[5]   THE STUDY OF THE LAWS OF BEHAVIOR AT HIGH-TEMPERATURE, IN PLASTICITY-FLOW, OF AN AUSTENITIC STAINLESS-STEEL (17-12-SPH) [J].
DELOBELLE, P ;
OYTANA, C .
JOURNAL OF NUCLEAR MATERIALS, 1986, 139 (03) :204-227
[6]   A COMPARISON OF 2 SIMPLE METHODS FOR MEASURING CYCLIC INTERNAL AND EFFECTIVE STRESSES [J].
DICKSON, JI ;
BOUTIN, J ;
HANDFIELD, L .
MATERIALS SCIENCE AND ENGINEERING, 1984, 64 (01) :L7-L11
[7]   Tension-induced softening and hardening in gradient nanograined surface layer in copper [J].
Fang, T. H. ;
Tao, N. R. ;
Lu, K. .
SCRIPTA MATERIALIA, 2014, 77 :17-20
[8]   Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper [J].
Fang, T. H. ;
Li, W. L. ;
Tao, N. R. ;
Lu, K. .
SCIENCE, 2011, 331 (6024) :1587-1590
[9]   On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: Back stress and effective stress [J].
Feaugas, X .
ACTA MATERIALIA, 1999, 47 (13) :3617-3632
[10]   Analysis of the hysteresis loops of a martensitic steel -: Part II:: Study of the influence of creep and stress relaxation holding times on cyclic behaviour [J].
Fournier, B. ;
Sauzay, M. ;
Caes, C. ;
Mottot, M. ;
Noblecourt, A. ;
Pineau, A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 437 (02) :197-211