A radius of curvature approach to the Kolmogorov-Sinai entropy of dilute hard particles in equilibrium

被引:3
作者
de Wijn, Astrid S. [1 ]
van Beijeren, Henk [2 ]
机构
[1] Radboud Univ Nijmegen, Inst Mol & Mat, Fac Sci, NL-6525 ED Nijmegen, Netherlands
[2] Univ Utrecht, Inst Theoret Phys, NL-3584 CE Utrecht, Netherlands
关键词
dynamical processes (theory); stationary states; kinetic theory of gases and liquids; molecular dynamics; LARGEST LYAPUNOV EXPONENT; CONJUGATE PAIRING RULE; LORENTZ GAS; SPECTRUM;
D O I
10.1088/1742-5468/2011/08/P08012
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We consider the Kolmogorov-Sinai entropy for dilute gases of N hard disks or spheres. This can be expanded in density as h(KS) proportional to nN[ln na(d)+B+O(na(d))+O(1/N)], with a the diameter of the sphere or disk, n the density, and d the dimensionality of the system. We estimate the constant B by solving a linear differential equation for the approximate distribution of eigenvalues of the inverse radius of curvature tensor. We compare the resulting values of B both to previous estimates and to existing simulation results, finding very good agreement with the latter. Also, we compare the distribution of eigenvalues of the inverse radius of curvature tensor resulting from our calculations to new simulation results. For most of the spectrum the agreement between our calculations and the simulations again is very good.
引用
收藏
页数:20
相关论文
共 36 条
[1]  
Abraham R., 1978, Foundations of Mechanics
[2]  
[Anonymous], 1993, SPRINGER SERIES SOLI, DOI DOI 10.1007/978-3-642-84942-8
[3]   MARKOV PARTITIONS FOR 2-DIMENSIONAL HYPERBOLIC BILLIARDS [J].
BUNIMOVICH, LA ;
SINAI, YG ;
CHERNOV, NI .
RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (03) :105-152
[4]   MARKOV PARTITIONS FOR DISPERSED BILLIARDS [J].
BUNIMOVICH, LA ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 78 (02) :247-280
[5]   Goldstone modes in Lyapunov spectra of hard sphere systems [J].
De Wijn, Astrid S. ;
Van Beijeren, Henk .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (1 2) :016207-1
[6]   Lyapunov spectra of billiards with cylindrical scatterers: Comparison with many-particle systems [J].
de Wijn, AS .
PHYSICAL REVIEW E, 2005, 72 (02)
[7]   Kolmogorov-Sinai entropy for dilute systems of hard particles in equilibrium [J].
de Wijn, AS .
PHYSICAL REVIEW E, 2005, 71 (04)
[8]   Lyapunov spectrum of the many-dimensional dilute random Lorentz gas [J].
De Wijn, Astrid S. ;
Van Beijeren, Henk .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (3 2) :036209-1
[9]   Lyapunov instability in a system of hard disks in equilibrium and nonequilibrium steady states [J].
Dellago, C ;
Posch, HA ;
Hoover, WG .
PHYSICAL REVIEW E, 1996, 53 (02) :1485-1501
[10]   Lyapunov spectrum and the conjugate pairing rule for a thermostatted random Lorentz gas: Numerical simulations [J].
Dellago, C ;
Posch, HA .
PHYSICAL REVIEW LETTERS, 1997, 78 (02) :211-214