Positivity in equivariant Schubert calculus

被引:58
作者
Graham, W [1 ]
机构
[1] Univ Georgia, Boyd Grad Studies Res Ctr, Dept Math, Athens, GA 30602 USA
关键词
D O I
10.1215/dmj/1000314066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a positivity property for the cup product in the T-equivariant cohomology of the flag variety. This was conjectured by D. Peterson and has as a consequence a conjecture of S. Billey. The result for the flag variety follows from a more general result about algebraic varieties with an action of a solvable linear algebraic group such that the unipotent radical acts with finitely many orbits. The methods are those used by S. Kumar and M. Nori.
引用
收藏
页码:599 / 614
页数:16
相关论文
共 25 条
[1]  
[Anonymous], 1991, LINEAR ALGEBRAIC GRO, DOI DOI 10.1007/978-1-4612-0941-6
[2]   T-EQUIVARIANT COHOMOLOGY OF THE FLAG VARIETY OF A KAC-MOODY GROUP [J].
ARABIA, A .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1989, 117 (02) :129-165
[3]   Kostant polynomials and the cohomology ring for G/B [J].
Billey, SC .
DUKE MATHEMATICAL JOURNAL, 1999, 96 (01) :205-224
[5]  
Brion M, 1998, NATO ADV SCI I C-MAT, V514, P1
[6]  
BRION M, 1997, J TRANSFORMATION GRO, V2, P225
[7]  
Chevalley C., 1994, P S PURE MATH 1, V56, P1
[8]  
Edidin D, 1998, INVENT MATH, V131, P595, DOI 10.1007/s002220050214
[9]   FLAGS, SCHUBERT POLYNOMIALS, DEGENERACY LOCI, AND DETERMINANTAL FORMULAS [J].
FULTON, W .
DUKE MATHEMATICAL JOURNAL, 1992, 65 (03) :381-420
[10]  
Fulton W, 1996, J DIFFER GEOM, V43, P276