Temperature modulated calorimetry is widely used but still raises some fundamental questions. In this paper we study a model system as a test sample to address some of them. The model has a nontrivial spectrum of relaxation times. We investigate temperature-modulated calorimetry at constant average temperature to precise the meaning of the frequency-dependent heat capacity, its relation with entropy production, and how such measurements can observe the aging of a glassy sample leading to a time-dependent heat capacity. The study of the Kovacs effect for an out-of-equilibrium system shows how temperature-modulated calorimetry could contribute to the understanding of this memory effect. Then we compare measurements of standard scanning calorimetry and temperature-modulated calorimetry and show how the two methods are complementary because they do not observe the same features. While it can probe the timescales of energy transfers in a system, even in the limit of low-frequency temperature-modulated calorimetry does not probe some relaxation phenomena which can be measured by scanning calorimetry, as suggested by experiments with glasses.
引用
收藏
页数:17
相关论文
共 29 条
[1]
Androsch R, 2001, J POLYM SCI POL PHYS, V39, P750, DOI 10.1002/1099-0488(20010401)39:7<750::AID-POLB1049>3.0.CO