In-situ construction of a hydroxide-based solid electrolyte interphase for robust zinc anodes

被引:83
|
作者
Yuan, Wentao [1 ]
Ma, Guoqiang [1 ]
Nie, Xueyu [1 ]
Wang, Yuanyuan [1 ]
Di, Shengli [1 ]
Wang, Liubin [1 ]
Wang, Jing [1 ]
Shen, Shigang [1 ]
Zhang, Ning [1 ]
机构
[1] Hebei Univ, Coll Chem & Environm Sci, Key Lab Analyt Sci & Technol Hebei Prov, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous batteries; Zinc metal anode; Solid electrolyte interphase; Interface engineering; Energy storage; DENDRITE FORMATION; HIGH-VOLTAGE; LONG-LIFE; WATER;
D O I
10.1016/j.cej.2021.134076
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Zinc (Zn) metal anode in conventional aqueous electrolytes suffers from water-induced side reactions (hydrogen evolution reaction (HER) and corrosion) and dendrite growth due to the absence of a reliable solid electrolyte interphase (SEI) layer. Here, a robust and Zn2+-conducting SEI composed of zinc hydroxide sulfate hydrate (ZHS) on Zn has been built in-situ by introducing SO(4)(2-)additives (e.g., ZnSO4 or Na2SO4 salt) into a non-concentrated aqueous electrolyte (i.e., 2 M zinc trifluoromethanesulfonate (Zn(OTF)(2))). Comprehensive characterizations demonstrate that the in-situ formation of SEI with compact structure is induced by a self-terminated chemical reaction of SO42- with Zn2+& nbsp;and OH- (stemming from HER) during the initial cycles, which in-turn terminates the continuous HER and Zn corrosion by isolating Zn from the bulk electrolyte and simultaneously allows a homogeneous Zn2+ diffusion. As a result, the in-situ formed SEI enables a high reversibility of Zn//Cu cell (99.8% Coulombic efficiency over 600 cycles at 1.0 mA cm(-2)) and an unprecedented cycling life of Zn//Zn cell (over 2000 h at 1.0 mA cm(-2)), and contributes to a stable operation of Zn//V2O5.nH(2)O full battery. This work will guide the interface engineering to build reliable SEI on metal anodes for aqueous batteries.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] In-situ construction of fluorinated solid-electrolyte interphase for highly reversible zinc anodes
    Jian, Qinping
    Wang, Tianshuai
    Sun, Jing
    Wu, Maochun
    Zhao, Tianshou
    ENERGY STORAGE MATERIALS, 2022, 53 : 559 - 568
  • [2] Zn-Ion Transporting, In Situ Formed Robust Solid Electrolyte Interphase for Stable Zinc Metal Anodes over a Wide Temperature Range
    Xiong, Peixun
    Kang, Yingbo
    Yao, Nan
    Chen, Xiang
    Mao, Haiyan
    Jang, Woo-Sung
    Halat, David M.
    Fu, Zhong-Heng
    Jung, Min-Hyoung
    Jeong, Hu Young
    Kim, Young-Min
    Reimer, Jeffrey A.
    Zhang, Qiang
    Park, Ho Seok
    ACS ENERGY LETTERS, 2023, 3 (1613-1625) : 1613 - 1625
  • [3] Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation
    Qiu, Huayu
    Du, Xiaofan
    Zhao, Jingwen
    Wang, Yantao
    Ju, Jiangwei
    Chen, Zheng
    Hu, Zhenglin
    Yan, Dongpeng
    Zhou, Xinhong
    Cui, Guanglei
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [4] Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase
    Di, Shengli
    Nie, Xueyu
    Ma, Guoqiang
    Yuan, Wentao
    Wang, Yuanyuan
    Liu, Yongchang
    Shen, Shigang
    Zhang, Ning
    ENERGY STORAGE MATERIALS, 2021, 43 : 375 - 382
  • [5] Solid Electrolyte Interphase on Lithium Metal Anodes
    Shen, Zhichuan
    Huang, Junqiao
    Xie, Yu
    Wei, Dafeng
    Chen, Jinbiao
    Shi, Zhicong
    CHEMSUSCHEM, 2024, 17 (11)
  • [6] In-situ electrochemical customization of solid electrolyte interphase for fast-charging and long-cycle-life graphite anodes
    Wu, Shumin
    Zhang, Yulong
    Liang, Hongcheng
    Pan, Hongji
    Chen, Lu
    Jiang, Yanxin
    Ding, Hao
    Wang, Peng
    Zhao, Dongni
    Zhang, Qing
    Zeng, Lin
    Li, Shiyou
    Li, Yiju
    ENERGY STORAGE MATERIALS, 2025, 75
  • [7] Research progress of solid electrolyte interphase for sodium metal anodes
    Hou, Minjie
    Zhou, Yingjie
    Liang, Feng
    Zhao, Huaping
    Ji, Deyang
    Zhang, Da
    Li, Liqiang
    Lei, Yong
    CHEMICAL ENGINEERING JOURNAL, 2023, 475
  • [8] In-situ growth of hydrophobic zinc succinate interphase with high ionic conductivity toward stable zinc anodes
    Lin, Shiya
    Yu, Neng
    Wu, Huichen
    Li, Ye
    Zeng, Qingpu
    Li, Jiating
    Sun, Changfang
    Guo, Kai
    APPLIED SURFACE SCIENCE, 2024, 659
  • [9] Robust Solid Electrolyte Interphase Induced by Dication Deep Eutectic Electrolytes for Sustainable Zn Anodes
    Li, Chunpeng
    Zhang, Jun
    Zhang, Kai
    Zhang, Anping
    Jian, Wei
    Jiang, Ping
    Wu, Zhong-Shuai
    Ruan, Dianbo
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (42) : 15470 - 15479
  • [10] In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes
    Xu, Shan-Min
    Duan, Hui
    Shi, Ji-Lei
    Zuo, Tong-Tong
    Hu, Xin-Cheng
    Lang, Shuang-Yan
    Yan, Min
    Liang, Jia-Yan
    Yang, Yu-Guo
    Kong, Qing-Hua
    Zhang, Xing
    Guo, Yu-Guo
    NANO RESEARCH, 2020, 13 (02) : 430 - 436