Permutation polynomials over finite fields from a powerful lemma

被引:78
作者
Yuan, Pingzhi [2 ]
Ding, Cunsheng [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Kowloon, Hong Kong, Peoples R China
[2] S China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R China
关键词
Permutation polynomials; Finite fields; Commutative diagrams; DIGITAL-SIGNATURES;
D O I
10.1016/j.ffa.2011.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a lemma proved by Akbary, Ghioca, and Wang, we derive several theorems on permutation polynomials over finite fields. These theorems give not only a unified treatment of some earlier constructions of permutation polynomials, but also new specific permutation polynomials over F-q. A number of earlier theorems and constructions of permutation polynomials are generalized. The results presented in this paper demonstrate the power of this lemma when it is employed together with other techniques. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:560 / 574
页数:15
相关论文
共 25 条
[1]   A generalized lucas sequence and permutation binomials [J].
Akbary, A ;
Wang, Q .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (01) :15-22
[2]  
Akbary A., 2007, Int. J. Math. Math. Sci, V2007, P23408
[3]   On constructing permutations of finite fields [J].
Akbary, Amir ;
Ghioca, Dragos ;
Wang, Qiang .
FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (01) :51-67
[4]  
[Anonymous], 1997, ENCY MATH APPL
[5]  
Blokhuis A, 2001, FINITE FIELDS AND APPLICATIONS, P37
[6]  
Charpin P, 2008, LECT NOTES COMPUT SC, V5203, P368, DOI 10.1007/978-3-540-85912-3_32
[7]   When does G(x) plus γ Tr(H(x)) permute Fpn? [J].
Charpin, Pascale ;
Kyureghyan, Gohar .
FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (05) :615-632
[8]  
Cunsheng Ding, 1997, Finite Fields and their Applications, V3, P159, DOI 10.1006/ffta.1997.0181
[9]   On the linear complexity of legendre sequences [J].
Ding, CS ;
Helleseth, T ;
Shan, WJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (03) :1276-1278
[10]   A family of skew Hadamard difference sets [J].
Ding, Cunsheng ;
Yuan, Jin .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) :1526-1535