Using yeast models to probe the molecular basis of amyotrophic lateral sclerosis

被引:21
作者
Bastow, Emma L. [1 ]
Gourlay, Campbell W. [1 ]
Tuite, Mick F. [1 ]
机构
[1] Univ Kent, Sch Biosci, Canterbury CT2 7NJ, Kent, England
基金
英国医学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
amyotrophic lateral sclerosis (ALS); fused in sarcoma (FUS); mitochondrion; protein aggregation; Saccharomyces cerevisiae; superoxide dismutase 1 (SOD1); TAR DNA-binding protein-43 (TDP-43); ZINC SUPEROXIDE-DISMUTASE; LENGTH POLYGLUTAMINE EXPANSIONS; HEAT-SHOCK PROTEINS; SACCHAROMYCES-CEREVISIAE; OXIDATIVE STRESS; COPPER-BINDING; MUTANT SOD1; CELL-DEATH; WILD-TYPE; ALS;
D O I
10.1042/BST0391482
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ALS (amyotrophic lateral sclerosis) is a fatal neurodegenerative disease attributable to the death of motor neurons. Associated with ALS are mutations in the genes encoding SOD1 (superoxide dismutase 1), FUS (fused in Sarcoma) protein and TDP-43 (TAR DNA-binding protein-43) each of which leads to aggregation of the respective protein. For example, the ALS-associated mutations in the hSOD1 (human SOD1) gene typically destabilize the native SOD homodimer, leading to misfolding, aggregation and degradation of SOD1. The ALS-associated pathology is not a consequence of the functional inactivation of SOW itself, but is rather due to a toxic gain-of-function triggered by mutant SOD1. Recently, the molecular basis of a number of human neurodegenerative diseases resulting from protein misfolding and aggregation, including fALS (familial ALS), was probed by using the baker's yeast, Saccharomyces cerevisiae, as a highly tractable model. Such studies have, for example, identified novel mutant SOD1-specific interactions and demonstrated that mutant SOD1 disrupts mitochondrial homoeostasis. Features of ALS associated with TDP-43 aggregation have also been recapitulated in S. cerevisiae including the identification of modulators of the toxicity of TDP-43. In this paper, we review recent studies of ALS pathogenesis using S. cerevisiae as a model organism and summarize the potential mechanisms involved in ALS progression.
引用
收藏
页码:1482 / 1487
页数:6
相关论文
共 50 条
[41]   Energy intake and amyotrophic lateral sclerosis [J].
Mattson, Mark P. ;
Cutler, Roy G. ;
Camandola, Simonetta .
NEUROMOLECULAR MEDICINE, 2007, 9 (01) :17-20
[42]   Energy intake and amyotrophic lateral sclerosis [J].
Mark P. Mattson ;
Roy G. Cutler ;
Simonetta Camandola .
NeuroMolecular Medicine, 2007, 9 :17-20
[43]   The Role of Iron in Amyotrophic Lateral Sclerosis [J].
Bu, Xian-Le ;
Xiang, Yang ;
Guo, Yansu .
BRAIN IRON METABOLISM AND CNS DISEASES, 2019, 1173 :145-152
[44]   The genetics and neuropathology of amyotrophic lateral sclerosis [J].
Al-Chalabi, Ammar ;
Jones, Ashley ;
Troakes, Claire ;
King, Andrew ;
Al-Sarraj, Safa ;
van den Berg, Leonard H. .
ACTA NEUROPATHOLOGICA, 2012, 124 (03) :339-352
[45]   MicroRNAs as Biomarkers in Amyotrophic Lateral Sclerosis [J].
Ricci, Claudia ;
Marzocchi, Carlotta ;
Battistini, Stefania .
CELLS, 2018, 7 (11)
[46]   A molecular view of amyotrophic lateral sclerosis through the lens of interaction network modules [J].
Jensen, Klaus Hojgaard ;
Stalder, Anna Katharina ;
Wernersson, Rasmus ;
Roloff-Handschin, Tim-Christoph ;
Hansen, Daniel Hvidberg ;
Groenen, Peter M. A. .
PLOS ONE, 2022, 17 (05)
[47]   Molecular Chaperones in the Pathogenesis of Amyotrophic Lateral Sclerosis: The Role of HSPB1 [J].
Capponi, Simona ;
Geuens, Thomas ;
Geroldi, Alessandro ;
Origone, Paola ;
Verdiani, Simonetta ;
Cichero, Elena ;
Adriaenssens, Elias ;
De Winter, Vicky ;
di Poggio, Monica Bandettini ;
Barberis, Marco ;
Chio, Adriano ;
Fossa, Paola ;
Mandich, Paola ;
Bellone, Emilia ;
Timmerman, Vincent .
HUMAN MUTATION, 2016, 37 (11) :1202-1208
[48]   The Regulatory Machinery of Neurodegeneration in In Vitro Models of Amyotrophic Lateral Sclerosis [J].
Ikiz, Burcin ;
Alvarez, Mariano J. ;
Re, Diane B. ;
Le Verche, Virginia ;
Politi, Kristin ;
Lotti, Francesco ;
Phani, Sudarshan ;
Pradhan, Radhika ;
Yu, Changhao ;
Croft, Gist F. ;
Jacquier, Arnaud ;
Henderson, Christopher E. ;
Califano, Andrea ;
Przedborski, Serge .
CELL REPORTS, 2015, 12 (02) :335-345
[49]   Simple animal models for amyotrophic lateral sclerosis drug discovery [J].
Patten, Shunmoogum A. ;
Parker, J. Alex ;
Wen, Xiao-Yan ;
Drapeau, Pierre .
EXPERT OPINION ON DRUG DISCOVERY, 2016, 11 (08) :797-804
[50]   Animal models of amyotrophic lateral sclerosis: a comparison of model validity [J].
Morrice, Jessica R. ;
Gregory-Evans, Cheryl Y. ;
Shaw, Christopher A. .
NEURAL REGENERATION RESEARCH, 2018, 13 (12) :2050-2054