Using yeast models to probe the molecular basis of amyotrophic lateral sclerosis

被引:21
作者
Bastow, Emma L. [1 ]
Gourlay, Campbell W. [1 ]
Tuite, Mick F. [1 ]
机构
[1] Univ Kent, Sch Biosci, Canterbury CT2 7NJ, Kent, England
基金
英国医学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
amyotrophic lateral sclerosis (ALS); fused in sarcoma (FUS); mitochondrion; protein aggregation; Saccharomyces cerevisiae; superoxide dismutase 1 (SOD1); TAR DNA-binding protein-43 (TDP-43); ZINC SUPEROXIDE-DISMUTASE; LENGTH POLYGLUTAMINE EXPANSIONS; HEAT-SHOCK PROTEINS; SACCHAROMYCES-CEREVISIAE; OXIDATIVE STRESS; COPPER-BINDING; MUTANT SOD1; CELL-DEATH; WILD-TYPE; ALS;
D O I
10.1042/BST0391482
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ALS (amyotrophic lateral sclerosis) is a fatal neurodegenerative disease attributable to the death of motor neurons. Associated with ALS are mutations in the genes encoding SOD1 (superoxide dismutase 1), FUS (fused in Sarcoma) protein and TDP-43 (TAR DNA-binding protein-43) each of which leads to aggregation of the respective protein. For example, the ALS-associated mutations in the hSOD1 (human SOD1) gene typically destabilize the native SOD homodimer, leading to misfolding, aggregation and degradation of SOD1. The ALS-associated pathology is not a consequence of the functional inactivation of SOW itself, but is rather due to a toxic gain-of-function triggered by mutant SOD1. Recently, the molecular basis of a number of human neurodegenerative diseases resulting from protein misfolding and aggregation, including fALS (familial ALS), was probed by using the baker's yeast, Saccharomyces cerevisiae, as a highly tractable model. Such studies have, for example, identified novel mutant SOD1-specific interactions and demonstrated that mutant SOD1 disrupts mitochondrial homoeostasis. Features of ALS associated with TDP-43 aggregation have also been recapitulated in S. cerevisiae including the identification of modulators of the toxicity of TDP-43. In this paper, we review recent studies of ALS pathogenesis using S. cerevisiae as a model organism and summarize the potential mechanisms involved in ALS progression.
引用
收藏
页码:1482 / 1487
页数:6
相关论文
共 50 条
  • [31] Linking RNA Dysfunction and Neurodegeneration in Amyotrophic Lateral Sclerosis
    Barmada, Sami J.
    [J]. NEUROTHERAPEUTICS, 2015, 12 (02) : 340 - 351
  • [32] Role of transition metals in the pathogenesis of amyotrophic lateral sclerosis
    Vonk, Willianne I. M.
    Klomp, Leo W. J.
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 2008, 36 : 1322 - 1328
  • [33] Amyotrophic lateral sclerosis
    Feldman, Eva L.
    Goutman, Stephen A.
    Petri, Susanne
    Mazzini, Letizia
    Savelieff, Masha G.
    Shaw, Pamela J.
    Sobue, Gen
    [J]. LANCET, 2022, 400 (10360) : 1363 - 1380
  • [34] Amyotrophic Lateral Sclerosis
    Malik, Rabia
    Lui, Andrew
    Lomen-Hoerth, Catherine
    [J]. SEMINARS IN NEUROLOGY, 2014, 34 (05) : 534 - 541
  • [35] Amyotrophic lateral sclerosis
    Ludolph, Albert C.
    Brettschneider, Johannes
    Weishaupt, Jochen H.
    [J]. CURRENT OPINION IN NEUROLOGY, 2012, 25 (05) : 530 - 535
  • [36] Dysfunction of the oligodendrocytes in amyotrophic lateral sclerosis
    Gong, Zhenxiang
    Ba, Li
    Zhang, Min
    [J]. JOURNAL OF BIOMEDICAL RESEARCH, 2022, 36 (05): : 336 - 342
  • [37] Protein aggregation in amyotrophic lateral sclerosis
    Blokhuis, Anna M.
    Groen, Ewout J. N.
    Koppers, Max
    van den Berg, Leonard H.
    Pasterkamp, R. Jeroen
    [J]. ACTA NEUROPATHOLOGICA, 2013, 125 (06) : 777 - 794
  • [38] Gene Therapy in Amyotrophic Lateral Sclerosis
    Fang, Ton
    Je, Goun
    Pacut, Peter
    Keyhanian, Kiandokht
    Gao, Jeff
    Ghasemi, Mehdi
    [J]. CELLS, 2022, 11 (13)
  • [39] Clinical Neurogenetics Amyotrophic Lateral Sclerosis
    Harms, Matthew B.
    Baloh, Robert H.
    [J]. NEUROLOGIC CLINICS, 2013, 31 (04) : 929 - +
  • [40] Energy intake and amyotrophic lateral sclerosis
    Mattson, Mark P.
    Cutler, Roy G.
    Camandola, Simonetta
    [J]. NEUROMOLECULAR MEDICINE, 2007, 9 (01) : 17 - 20