Using yeast models to probe the molecular basis of amyotrophic lateral sclerosis

被引:21
作者
Bastow, Emma L. [1 ]
Gourlay, Campbell W. [1 ]
Tuite, Mick F. [1 ]
机构
[1] Univ Kent, Sch Biosci, Canterbury CT2 7NJ, Kent, England
基金
英国医学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
amyotrophic lateral sclerosis (ALS); fused in sarcoma (FUS); mitochondrion; protein aggregation; Saccharomyces cerevisiae; superoxide dismutase 1 (SOD1); TAR DNA-binding protein-43 (TDP-43); ZINC SUPEROXIDE-DISMUTASE; LENGTH POLYGLUTAMINE EXPANSIONS; HEAT-SHOCK PROTEINS; SACCHAROMYCES-CEREVISIAE; OXIDATIVE STRESS; COPPER-BINDING; MUTANT SOD1; CELL-DEATH; WILD-TYPE; ALS;
D O I
10.1042/BST0391482
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ALS (amyotrophic lateral sclerosis) is a fatal neurodegenerative disease attributable to the death of motor neurons. Associated with ALS are mutations in the genes encoding SOD1 (superoxide dismutase 1), FUS (fused in Sarcoma) protein and TDP-43 (TAR DNA-binding protein-43) each of which leads to aggregation of the respective protein. For example, the ALS-associated mutations in the hSOD1 (human SOD1) gene typically destabilize the native SOD homodimer, leading to misfolding, aggregation and degradation of SOD1. The ALS-associated pathology is not a consequence of the functional inactivation of SOW itself, but is rather due to a toxic gain-of-function triggered by mutant SOD1. Recently, the molecular basis of a number of human neurodegenerative diseases resulting from protein misfolding and aggregation, including fALS (familial ALS), was probed by using the baker's yeast, Saccharomyces cerevisiae, as a highly tractable model. Such studies have, for example, identified novel mutant SOD1-specific interactions and demonstrated that mutant SOD1 disrupts mitochondrial homoeostasis. Features of ALS associated with TDP-43 aggregation have also been recapitulated in S. cerevisiae including the identification of modulators of the toxicity of TDP-43. In this paper, we review recent studies of ALS pathogenesis using S. cerevisiae as a model organism and summarize the potential mechanisms involved in ALS progression.
引用
收藏
页码:1482 / 1487
页数:6
相关论文
共 50 条
[21]   Where and Why Modeling Amyotrophic Lateral Sclerosis [J].
Liguori, Francesco ;
Amadio, Susanna ;
Volonte, Cinzia .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (08)
[22]   Mitochondrial dysfunction in familial amyotrophic lateral sclerosis [J].
Faes, Liesbeth ;
Callewaert, Geert .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2011, 43 (06) :587-592
[23]   Involvement of Lipids in the Pathogenesis of Amyotrophic Lateral Sclerosis [J].
Alessenko, Alisa V. ;
Gutner, Uliana A. ;
Shupik, Maria A. .
LIFE-BASEL, 2023, 13 (02)
[24]   Amyotrophic lateral sclerosis: an update [J].
de Carvalho, Mamede ;
Swash, Michael .
CURRENT OPINION IN NEUROLOGY, 2011, 24 (05) :497-503
[25]   Amyotrophic Lateral Sclerosis Mechanism: Insights from the Caenorhabditis elegans Models [J].
Chen, Lili ;
Zhang, Shumei ;
Liu, Sai ;
Gao, Shangbang .
CELLS, 2024, 13 (01)
[26]   FUS/TLS forms cytoplasmic aggregates, inhibits cell growth and interacts with TDP-43 in a yeast model of amyotrophic lateral sclerosis [J].
Kryndushkin, Dmitry ;
Wickner, Reed B. ;
Shewmaker, Frank .
PROTEIN & CELL, 2011, 2 (03) :223-236
[27]   Murine experimental models of amyotrophic lateral sclerosis: An update [J].
Moreno-Jimenez, L. ;
Benito-Martin, M. S. ;
Sanclemente-Alaman, I. ;
Matias-Guiu, J. A. ;
Sancho-Bielsa, F. ;
Canales-Aguirre, A. ;
Mateos-Diaz, J. C. ;
Matias-Guiu, J. ;
Aguilar, J. ;
Gomez-Pinedo, U. .
NEUROLOGIA, 2024, 39 (03) :282-291
[28]   New In Vitro Models to Study Amyotrophic Lateral Sclerosis [J].
Myszczynska, Monika ;
Ferraiuolo, Laura .
BRAIN PATHOLOGY, 2016, 26 (02) :258-265
[29]   Hereditary Motor Neuropathies and Amyotrophic Lateral Sclerosis: a Molecular and Clinical Update [J].
Garcia-Santibanez, Rocio ;
Burford, Matthew ;
Bucelli, Robert C. .
CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS, 2018, 18 (12)
[30]   Frontotemporal lobar degeneration and amyotrophic lateral sclerosis: Molecular similarities and differences [J].
Neumann, M. .
REVUE NEUROLOGIQUE, 2013, 169 (10) :793-798