Attention-Based Radar PRI Modulation Recognition With Recurrent Neural Networks

被引:46
|
作者
Li, Xueqiong [1 ]
Liu, Zhangmeng [1 ]
Huang, Zhitao [1 ]
机构
[1] Natl Univ Def Technol, Dept Elect Sci, Changsha 410073, Peoples R China
关键词
Attention mechanism; electronic warfare; PRI modulation; recurrent neural network (RNN); PULSE; CLASSIFICATION;
D O I
10.1109/ACCESS.2020.2982654
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Analyzing radar signals is a critical task in modern Electronic Warfare (EW) environments. However, the pulse streams emitted by radars have flexible features and complex patterns which are difficult to be identified from a statistical perspective. To solve this problem, pulse repetition interval (PRI) is used as a distinguishing parameter of emitters to be identified. However, traditional PRI modulation recognition methods can only deal with simple PRI modulations and their performance will further degrade with the increasing number of emitters or noisy environments. In this paper, we introduce an attention-based recognition framework based on recurrent neural network (RNN) to categorize pulse streams with complex PRI modulations and in environments with high ratios of missing and spurious pulses. Simulation results show that our model is robust to noisy environments and has a better performance than conventional methods.
引用
收藏
页码:57426 / 57436
页数:11
相关论文
共 50 条
  • [21] Attention-Based Convolutional Neural Network and Bidirectional Gated Recurrent Unit for Human Activity Recognition
    Tao, Shuai
    Zhao, Zhiqiang
    Qin, Jing
    Ji, Changqing
    Wang, Zumin
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1128 - 1134
  • [22] PredictPTB: an interpretable preterm birth prediction model using attention-based recurrent neural networks
    AlSaad, Rawan
    Malluhi, Qutaibah
    Boughorbel, Sabri
    BIODATA MINING, 2022, 15 (01)
  • [23] PredictPTB: an interpretable preterm birth prediction model using attention-based recurrent neural networks
    Rawan AlSaad
    Qutaibah Malluhi
    Sabri Boughorbel
    BioData Mining, 15
  • [24] Radar Emitter Recognition Based on Spiking Neural Networks
    Luo, Zhenghao
    Wang, Xingdong
    Yuan, Shuo
    Liu, Zhangmeng
    REMOTE SENSING, 2024, 16 (14)
  • [25] Attention-based Encoder-Decoder Recurrent Neural Networks for HTTP Payload Anomaly Detection
    Wu, Shang
    Wang, Yijie
    19TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2021), 2021, : 1452 - 1459
  • [26] Hyperspectral Band Selection Using Attention-Based Convolutional Neural Networks
    Lorenzo, Pablo Ribalta
    Tulczyjew, Lukasz
    Marcinkiewicz, Michal
    Nalepa, Jakub
    IEEE ACCESS, 2020, 8 : 42384 - 42403
  • [27] Attention-based recurrent neural network for influenza epidemic prediction
    Zhu, Xianglei
    Fu, Bofeng
    Yang, Yaodong
    Ma, Yu
    Hao, Jianye
    Chen, Siqi
    Liu, Shuang
    Li, Tiegang
    Liu, Sen
    Guo, Weiming
    Liao, Zhenyu
    BMC BIOINFORMATICS, 2019, 20 (Suppl 18)
  • [28] MPA-RNN: A Novel Attention-Based Recurrent Neural Networks for Total Nitrogen Prediction
    Geng, Jingxuan
    Yang, Chunhua
    Li, Yonggang
    Lan, Lijuan
    Luo, Qiwu
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (10) : 6516 - 6525
  • [29] Attention-based recurrent neural network for influenza epidemic prediction
    Xianglei Zhu
    Bofeng Fu
    Yaodong Yang
    Yu Ma
    Jianye Hao
    Siqi Chen
    Shuang Liu
    Tiegang Li
    Sen Liu
    Weiming Guo
    Zhenyu Liao
    BMC Bioinformatics, 20
  • [30] Attention-based Recurrent Neural Network for Traffic Flow Prediction
    Chen, Qi
    Wang, Wei
    Huang, Xin
    Liang, Hai-ning
    JOURNAL OF INTERNET TECHNOLOGY, 2020, 21 (03): : 831 - 839