HEAT SHOCK PROTEIN 70 KDA OVER-EXPRESSION AND 1-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE-INDUCED NIGROSTRIATAL DEGENERATION IN MICE

被引:3
作者
Gao, L. [1 ,2 ]
Diaz-Martin, J. [1 ,2 ]
Dillmann, W. H. [3 ]
Lopez-Barneo, J. [1 ,2 ]
机构
[1] Univ Seville, Hosp Univ Virgen Rocio, Inst Biomed Sevilla IBiS, ICSIC, Seville 41013, Spain
[2] CIBERNED, Zamudio, Spain
[3] Univ Calif San Diego, Dept Med, Div Endocrinol & Metab, San Diego, CA 92103 USA
关键词
heat shock protein 70 kDa; MPTP; Parkinson's disease; transgenic mice; ENDOPLASMIC-RETICULUM STRESS; ALPHA-SYNUCLEIN AGGREGATION; PARKINSONS-DISEASE; SUBSTANTIA-NIGRA; MOUSE MODEL; DOPAMINERGIC-NEURONS; GENE-EXPRESSION; C-JUN; MPTP; PROTECTS;
D O I
10.1016/j.neuroscience.2011.07.028
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Oxidative damage in the dopaminergic neurons of substantia nigra pars compacta (SNpc) plays an important role in the pathogenesis of Parkinson's disease (PD). Heat shock proteins 70 kDa (HSP70s) are a sub-family of molecular chaperones involved in not only protein folding and degradation but also antioxidant defense and anti-apoptotic pathways. Here, a transgenic mice over-expressing an inducible form of Hsp70 was used to determine whether HSP70 affects 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal degeneration, an experimental model of PD. The Hsp70 transgenic animals exhibited a high level of expression of HSP70 protein in ventral mesencephalon. Dopaminergic cell death in the SNpc was similar between wild-type and Hsp70 transgenic mice with either acute (40 mg/kg, single dose) or chronic (20 mg/kg, three times/week during 1 month) MPTP treatment. In addition, striatel dopamine loss was not different between wild-type and transgenic animals. Three months after the acute MPTP treatment, dopamine loss was partially recovered into a similar level between wild-type and transgenic groups. In conclusion, over-expression of Hsp70 does not suppress dopaminergic neuronal damage at either the somata or the axon terminals of dopaminergic neurons. Hsp70 over-expression does not help axon terminal regeneration either. These results indicate that HSP70 alone is not sufficient to reduce MPTP-induced dopaminergic neuronal damage. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:323 / 329
页数:7
相关论文
共 35 条
[1]   Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease [J].
Auluck, PK ;
Chan, HYE ;
Trojanowski, JQ ;
Lee, VMY ;
Bonini, NM .
SCIENCE, 2002, 295 (5556) :865-868
[2]   Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome [J].
Beere, HM ;
Wolf, BB ;
Cain, K ;
Mosser, DD ;
Mahboubi, A ;
Kuwana, T ;
Tailor, P ;
Morimoto, RI ;
Cohen, GM ;
Green, DR .
NATURE CELL BIOLOGY, 2000, 2 (08) :469-475
[3]   Response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) differs in mouse strains and reveals a divergence in JNK signaling and COX-2 induction prior to loss of neurons in the substantia nigra pars compacta [J].
Boyd, Justin D. ;
Jang, Haeman ;
Shepherd, Kennie R. ;
Faherty, Ciaran ;
Slack, Sally ;
Jiao, Yun ;
Smeyne, Richard J. .
BRAIN RESEARCH, 2007, 1175 :107-116
[4]  
Cavalieri B., 1966, GEOMETRIA INDIVISIBI
[5]   Sequential up-regulation of the c-fos, c-jun and bax genes in the cortex, striatum and cerebellum induced by a single injection of a low dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6 mice [J].
Chen, JYR ;
Hsu, PC ;
Hsu, IL ;
Yeh, GC .
NEUROSCIENCE LETTERS, 2001, 314 (1-2) :49-52
[6]   Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity [J].
Cleren, C ;
Calingasan, NY ;
Chen, J ;
Beal, MF .
JOURNAL OF NEUROCHEMISTRY, 2005, 94 (04) :995-1004
[7]   Parkinson's disease: Mechanisms and models [J].
Dauer, W ;
Przedborski, S .
NEURON, 2003, 39 (06) :889-909
[8]   Molecular pathways of neurodegeneration in Parkinson's disease [J].
Dawson, TM ;
Dawson, VL .
SCIENCE, 2003, 302 (5646) :819-822
[9]   HsD70 gene transfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease [J].
Dong, ZZ ;
Wolfer, DP ;
Lipp, HP ;
Büeler, H .
MOLECULAR THERAPY, 2005, 11 (01) :80-88
[10]   MPP+ induces the endoplasmic reticulum stress response in rabbit brain involving activation of the ATF-6 and NF-κB signaling pathways [J].
Ghribi, O ;
Herman, MM ;
Pramoonjago, P ;
Savory, J .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2003, 62 (11) :1144-1153