DNA-based plasmonic nanostructures

被引:72
|
作者
Chao, Jie [1 ,2 ,3 ,4 ]
Lin, Yunfeng [5 ]
Liu, Huajie [3 ,4 ]
Wang, Lianhui [1 ,2 ]
Fan, Chunhai [3 ,4 ]
机构
[1] Nanjing Univ Posts & Telecommun, IAM, KLOEID, Nanjing 210046, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Mat Sci & Engn, Nanjing 210046, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Appl Phys, CAS Key Lab Interfacial Phys & Technol, Shanghai Synchrotron Radiat Facil,Div Phys Biol, Shanghai 201800, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Appl Phys, CAS Key Lab Interfacial Phys & Technol, Shanghai Synchrotron Radiat Facil,Bioimaging Ctr, Shanghai 201800, Peoples R China
[5] Sichuan Univ, West China Hospitial Stomatol, State Key Lab Oral Dis, Chengdu 610041, Peoples R China
基金
美国国家科学基金会;
关键词
ENHANCED RAMAN-SCATTERING; CREATE NANOSCALE SHAPES; GOLD NANOPARTICLES; INTRACELLULAR DELIVERY; NANOCOMPONENT ARRAYS; CIRCULAR-DICHROISM; STRANDED-DNA; QUANTUM DOTS; FOLDING DNA; ORIGAMI;
D O I
10.1016/j.mattod.2015.01.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Plasmonic nanostructures have rapidly emerged as a type of optical material possessing many novel physical properties and holding great promise for a wide range of applications. One of the key challenges in this area lies in the bottom-up construction of precise plasmonic nanostructures with novel optical properties. By exploiting the unparalleled self-recognition properties of DNA molecules, researchers in the area of DNA nanotechnology have worked to make complex and hierarchical DNA nanostructures in a highly controllable and programmable manner, which offers unprecedented opportunities for developing self-assembled plasmonic nanostructures. In this review, we will summarize recent advances on design and fabrication of static and dynamic DNA nanostructures, and their use as linkers or templates for the assembly of plasmonic nanostructures.
引用
收藏
页码:326 / 335
页数:10
相关论文
共 50 条
  • [41] Electrochemical Synthesis of Plasmonic Nanostructures
    Piaskowski, Joshua
    Bourret, Gilles R.
    MOLECULES, 2022, 27 (08):
  • [42] Design and Fabrication of Plasmonic Nanostructures with DNA for Surface-Enhanced Raman Spectroscopy Applications
    Leng, Chunbo
    Wang, Cheng
    Xiu, Huixin
    Qu, Xiangmeng
    Chen, Lizhen
    Tang, Qian
    Li, Li
    CHINESE JOURNAL OF CHEMISTRY, 2016, 34 (03) : 273 - 282
  • [43] Engineering DNA Binding Sites to Assemble and Tune Plasmonic Nanostructures
    Clark, Alasdair W.
    Thompson, David G.
    Graham, Duncan
    Cooper, Jonathan M.
    ADVANCED MATERIALS, 2014, 26 (25) : 4286 - 4292
  • [44] DNA Directed Self-Assembly of Anisotropic Plasmonic Nanostructures
    Pal, Suchetan
    Deng, Zhengtao
    Wang, Haining
    Zou, Shengli
    Liu, Yan
    Yan, Hao
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (44) : 17606 - 17609
  • [45] Assembling gold nanobipyramids into chiral plasmonic nanostructures with DNA origami
    Dong, Jinyi
    Zhou, Yihao
    Pan, Jiahao
    Zhou, Chao
    Wang, Qiangbin
    CHEMICAL COMMUNICATIONS, 2021, 57 (50) : 6201 - 6204
  • [46] DNA-Based Enzyme Reactors and Systems
    Linko, Veikko
    Nummelin, Sami
    Aarnos, Laura
    Tapio, Kosti
    Toppari, J. Jussi
    Kostiainen, Mauri A.
    NANOMATERIALS, 2016, 6 (08):
  • [47] DNA-based assembly lines and nanofactories
    Simmel, Friedrich C.
    CURRENT OPINION IN BIOTECHNOLOGY, 2012, 23 (04) : 516 - 521
  • [48] Functionalization of DNA nanostructures with proteins
    Sacca, Barbara
    Niemeyer, Christof M.
    CHEMICAL SOCIETY REVIEWS, 2011, 40 (12) : 5910 - 5921
  • [49] DNA-mediated dynamic plasmonic nanostructures: assembly, actuation, optical properties, and biological applications
    Zhang, Jingjing
    Song, Chunyuan
    Wang, Lianhui
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (39) : 23959 - 23979
  • [50] Biomedical Applications of DNA-Nanomaterials Based on Metallic Nanoparticles and DNA Self-Assembled Nanostructures
    Wen, Yanli
    Li, Lanying
    Wang, Lele
    Xu, Li
    Liang, Wen
    Ren, Suzhen
    Liu, Gang
    CHINESE JOURNAL OF CHEMISTRY, 2016, 34 (03) : 283 - 290