Characterization and atomic modeling of an asymmetric grain boundary

被引:13
|
作者
Lee, Hak-Sung [1 ]
Mizoguchi, Teruyasu [2 ]
Yamamoto, Takahisa [3 ,4 ]
Kang, Suk-Joong L. [5 ]
Ikuhara, Yuichi [1 ,4 ]
机构
[1] Univ Tokyo, Inst Engn Innovat, Bunkyo Ku, Tokyo 1138656, Japan
[2] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538505, Japan
[3] Univ Tokyo, Dept Adv Mat Sci, Kashiwa, Chiba 2778561, Japan
[4] Japan Fine Ceram Ctr, Nanostruct Res Lab, Nagoya, Aichi 4568587, Japan
[5] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea
来源
PHYSICAL REVIEW B | 2011年 / 84卷 / 19期
关键词
ELECTRON-TRANSPORT BEHAVIORS; TILT BOUNDARIES; SRTIO3; METALS; INTERFACES; BICRYSTALS; ALUMINUM; ENERGY; COPPER; STGB;
D O I
10.1103/PhysRevB.84.195319
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Grain boundaries (GBs) significantly affect the properties of materials. In an effort to examine the phenomena at GBs, many model boundaries, typically symmetric tilt GBs, have been investigated. However, the geometries of symmetric tilt GBs are too restricted to represent commonly occurring interface phenomena properly in polycrystalline materials. Thus, a method of applying density functional theory (DFT) to asymmetric GBs has long been desired. Here, we present a simple geometric method and a new GB model with two surfaces which make it possible to characterize an asymmetric tilt GB and calculate the GB energetics. Our method can be extended to study other geometric asymmetric interfaces in various materials. The proposed technique thus paves the way for DFT-related studies of asymmetric interfaces.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Deformation response of grain boundary networks at high temperature
    Smith, Laura
    Farkas, Diana
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (08) : 5696 - 5705
  • [42] The grain-boundary structural unit model redux
    Han, Jian
    Vitek, Vaclav
    Srolovitz, David J.
    ACTA MATERIALIA, 2017, 133 : 186 - 199
  • [43] Grain boundary and triple junction diffusion in nanocrystalline copper
    Wegner, M.
    Leuthold, J.
    Peterlechner, M.
    Song, X.
    Divinski, S. V.
    Wilde, G.
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (09)
  • [44] The Distribution of Grain Boundary Planes in Interstitial Free Steel
    Beladi, Hossein
    Rohrer, Gregory S.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2013, 44A (01): : 115 - 124
  • [45] The relationship between grain boundary structure, defect mobility, and grain boundary sink efficiency
    Uberuaga, Blas Pedro
    Vernon, Louis J.
    Martinez, Enrique
    Voter, Arthur F.
    SCIENTIFIC REPORTS, 2015, 5
  • [46] Complex Nanotwin Substructure of an Asymmetric Σ9 Tilt Grain Boundary in a Silicon Polycrystal
    Stoffers, A.
    Ziebarth, B.
    Barthel, J.
    Cojocaru-Miredin, O.
    Elsaesser, C.
    Raabe, D.
    PHYSICAL REVIEW LETTERS, 2015, 115 (23)
  • [47] The grain boundary mobility tensor
    Chen, Kongtao
    Han, Jian
    Pan, Xiaoqing
    Srolovitz, David J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (09) : 4533 - 4538
  • [48] Segregation-Induced Nanofaceting Transition at an Asymmetric Tilt Grain Boundary in Copper
    Peter, Nicolas J.
    Frolov, Timofey
    Duarte, Maria J.
    Hadian, Raheleh
    Ophus, Colin
    Kirchlechner, Christoph
    Liebscher, Christian H.
    Dehm, Gerhard
    PHYSICAL REVIEW LETTERS, 2018, 121 (25)
  • [49] An atomic insight into effect of grain boundary on diffusion behavior of Cu/Al dissimilar materials undergoing ultrasonic welding
    Yang, Jing-wei
    Xie, Chu-hao
    Zhang, Jie
    Ding, Zong-ye
    Qiao, Jian
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2024, 31 (10) : 2555 - 2567
  • [50] Grain-Boundary Shear-Migration Coupling in Al Bicrystals. Atomistic Modeling
    Kar'kina, L. E.
    Kar'kin, I. N.
    Kuznetsov, A. R.
    Gornostyrev, Yu. N.
    PHYSICS OF THE SOLID STATE, 2018, 60 (10) : 1916 - 1923