Characterization and atomic modeling of an asymmetric grain boundary

被引:13
|
作者
Lee, Hak-Sung [1 ]
Mizoguchi, Teruyasu [2 ]
Yamamoto, Takahisa [3 ,4 ]
Kang, Suk-Joong L. [5 ]
Ikuhara, Yuichi [1 ,4 ]
机构
[1] Univ Tokyo, Inst Engn Innovat, Bunkyo Ku, Tokyo 1138656, Japan
[2] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538505, Japan
[3] Univ Tokyo, Dept Adv Mat Sci, Kashiwa, Chiba 2778561, Japan
[4] Japan Fine Ceram Ctr, Nanostruct Res Lab, Nagoya, Aichi 4568587, Japan
[5] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea
来源
PHYSICAL REVIEW B | 2011年 / 84卷 / 19期
关键词
ELECTRON-TRANSPORT BEHAVIORS; TILT BOUNDARIES; SRTIO3; METALS; INTERFACES; BICRYSTALS; ALUMINUM; ENERGY; COPPER; STGB;
D O I
10.1103/PhysRevB.84.195319
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Grain boundaries (GBs) significantly affect the properties of materials. In an effort to examine the phenomena at GBs, many model boundaries, typically symmetric tilt GBs, have been investigated. However, the geometries of symmetric tilt GBs are too restricted to represent commonly occurring interface phenomena properly in polycrystalline materials. Thus, a method of applying density functional theory (DFT) to asymmetric GBs has long been desired. Here, we present a simple geometric method and a new GB model with two surfaces which make it possible to characterize an asymmetric tilt GB and calculate the GB energetics. Our method can be extended to study other geometric asymmetric interfaces in various materials. The proposed technique thus paves the way for DFT-related studies of asymmetric interfaces.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Learning the grain boundary manifold: tools for visualizing and fitting grain boundary properties
    Chesser, I
    Francis, T.
    De Graef, M.
    Holm, E. A.
    ACTA MATERIALIA, 2020, 195 : 209 - 218
  • [12] Atomic scale volume and grain boundary diffusion elucidated by in situ STEM
    Schweizer, Peter
    Sharma, Amit
    Petho, Laszlo
    Huszar, Emese
    Vogl, Lilian Maria
    Michler, Johann
    Maeder, Xavier
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [13] Atomic simulations of twist grain boundary structures and deformation behaviors in aluminum
    Yin, Qing
    Wang, Zhiqiang
    Mishra, Rajiv
    Xia, Zhenhai
    AIP ADVANCES, 2017, 7 (01)
  • [14] Role of atomic structure on grain boundary-defect interactions in Cu
    Bai, Xian-Ming
    Vernon, Louis J.
    Hoagland, Richard G.
    Voter, Arthur F.
    Nastasi, Michael
    Uberuaga, Blas Pedro
    PHYSICAL REVIEW B, 2012, 85 (21)
  • [15] Quantifying grain boundary damage tolerance with atomistic simulations
    Foley, Daniel
    Tucker, Garritt J.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2016, 24 (07)
  • [16] Influence of grain boundary properties on spall strength: Grain boundary energy and excess volume
    Fensin, S. J.
    Valone, S. M.
    Cerreta, E. K.
    Gray, G. T., III
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (08)
  • [17] Validating computed grain boundary energies in fcc metals using the grain boundary character distribution
    Holm, Elizabeth A.
    Rohrer, Gregory S.
    Foiles, Stephen M.
    Rollett, Anthony D.
    Miller, Herbert M.
    Olmsted, David L.
    ACTA MATERIALIA, 2011, 59 (13) : 5250 - 5256
  • [18] Boundary plane-oriented grain boundary model generation
    Hinuma, Yoyo
    Kohyama, Masanori
    Tanaka, Shingo
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2022, 30 (04)
  • [19] Dislocation Nucleation on Grain Boundaries: Low Angle Twist and Asymmetric Tilt Boundaries
    Guleryuz, Erman
    Mesarovic, Sinisa Dj.
    CRYSTALS, 2016, 6 (07):
  • [20] Influence of grain boundary conditions on modeling of size-dependence in polycrystals
    Ekh, Magnus
    Bargmann, Swantje
    Grymer, Mikkel
    ACTA MECHANICA, 2011, 218 (1-2) : 103 - 113