Inhaled Nitric Oxide Augments Left Ventricular Assist Device Capacity by Ameliorating Secondary Right Ventricular Failure

被引:14
作者
Lovich, Mark A. [1 ]
Pezone, Matthew J. [1 ]
Wakim, Matthew G. [1 ]
Denton, Ryan J. [4 ]
Maslov, Mikhail Y. [1 ]
Murray, Michael R. [1 ]
Tsukada, Hisashi [2 ]
Agnihotri, Arvind K. [2 ]
Roscigno, Robert F. [3 ]
Gamero, Lucas G. [3 ]
Gilbert, Richard J. [4 ]
机构
[1] Tufts Univ, Sch Med, Steward St Elizabeths Med Ctr, Dept Anesthesiol Pain Med & Crit Care, Boston, MA 02135 USA
[2] Tufts Univ, Sch Med, Steward St Elizabeths Med Ctr, Dept Surg, Boston, MA 02135 USA
[3] GeNO LLC, Cocoa, FL USA
[4] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA
关键词
LVAD; right ventricular failure; pulmonary hypertension; nitric oxide; swine; RIGHT HEART-FAILURE; PULMONARY-ARTERIAL-HYPERTENSION; ENDOTHELIN-RECEPTOR ANTAGONIST; DOUBLE-BLIND; IMPLANTATION; RISK; PRESSURE; BOSENTAN; FLOW;
D O I
10.1097/MAT.0000000000000211
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Clinical right ventricular (RV) impairment can occur with left ventricular assist device (LVAD) use, thereby compromising the therapeutic effectiveness. The underlying mechanism of this RV failure may be related to induced abnormalities of septal wall motion, RV distension and ischemia, decreased LV filling, and aberrations of LVAD flow. Inhaled nitric oxide (NO), a potent pulmonary vasodilator, may reduce RV after-load, and thereby increase LV filling, LVAD flow, and cardiac output (CO). To investigate the mechanisms associated with LVAD-induced RV dysfunction and its treatment, we created a swine model of hypoxia-induced pulmonary hypertension and acute LVAD-induced RV failure and assessed the physiological effects of NO. Increased LVAD speed resulted in linear increases in LVAD flow until pulse pressure narrowed. Higher speeds induced flow instability, LV collapse, a precipitous fall of both LVAD flow and CO. Nitric oxide (20 ppm) treatment significantly increased the maximal achievable LVAD speed, LVAD flow, CO, and LV diameter. Nitric oxide resulted in decreased pulmonary vascular resistance and RV distension, increased RV ejection, promoted LV filling and improved LVAD performance. Inhaled NO may thus have broad utility for the management of biventricular disease managed by LVAD implantation through the effects of NO on LV and RV wall dynamics.
引用
收藏
页码:379 / 385
页数:7
相关论文
共 50 条
  • [41] Protect right: right ventricular failure prevention strategy for left ventricular assist device implantation
    Kawabori, Masashi
    Nordan, Taylor
    Kapur, Navin K.
    Couper, Gregory S.
    [J]. EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2021, 59 (05) : 1128 - 1130
  • [42] Predictors and Outcomes of Right Ventricular Failure in Patients With Left Ventricular Assist Devices
    Cyrille, Nicole B.
    Tran, A. L.
    Benito-Gonzalez, T.
    Villablanca, Pedro A.
    Briceno, David F.
    Vucicevic, Darko
    Ramakrishna, Harish
    [J]. JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2017, 31 (03) : 1132 - 1141
  • [43] Outcomes of Minimally Invasive Temporary Right Ventricular Assist Device Support for Acute Right Ventricular Failure During Minimally Invasive Left Ventricular Assist Device Implantation
    Schaefer, Andreas
    Reichart, Daniel
    Bernhardt, Alexander M.
    Kubik, Mathias
    Barten, Markus J.
    Wagner, Florian M.
    Reichenspurner, Hermann
    Philipp, Sebastian A.
    Deuse, Tobias
    [J]. ASAIO JOURNAL, 2017, 63 (05) : 546 - 550
  • [44] Comparison of Percutaneous and Surgical Right Ventricular Assist Device Support After Durable Left Ventricular Assist Device Insertion
    Coromilas, Ellie J.
    Takeda, Koji
    Ando, Masahiko
    Cevasco, Marisa
    Green, Phillip
    Karmpaliotis, Dimitri
    Kirtane, Ajay
    Topkara, Veli K.
    Yuzefpolskaya, Melana
    Takayama, Hiroo
    Naka, Yoshifumi
    Burkhoff, Daniel
    Colombo, Paolo C.
    Garan, A. Reshad
    [J]. JOURNAL OF CARDIAC FAILURE, 2019, 25 (02) : 105 - 113
  • [45] Clinical signs of right ventricular failure following implantation of a left ventricular assist device
    Potapov, Evgenij V.
    Schoenrath, Felix
    Falk, Volkmar
    [J]. EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 (02) : 383 - 383
  • [46] Pectus Excavatum and Risk of Right Ventricular Failure in Left Ventricular Assist Device Patients
    Zijderhand, Casper F.
    Yalcin, Yunus C.
    Sjatskig, Jelena
    Bos, Daniel
    Constantinescu, Alina A.
    Manintveld, Olivier C.
    Birim, Ozcan
    Bekkers, Jos A.
    Caliskan, Kadir
    [J]. REVIEWS IN CARDIOVASCULAR MEDICINE, 2023, 24 (11)
  • [47] Right heart failure and "failure to thrive" after left ventricular assist device: Clinical predictors and outcomes
    Baumwol, Jay
    Macdonald, Peter S.
    Keogh, Anne M.
    Kotlyar, Eugene
    Spratt, Phillip
    Jansz, Paul
    Hayward, Christopher S.
    [J]. JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2011, 30 (08) : 888 - 895
  • [48] Right-ventricular failure following left ventricle assist device implantation
    Patlolla, Bhagat
    Beygui, Ramin
    Haddad, Francois
    [J]. CURRENT OPINION IN CARDIOLOGY, 2013, 28 (02) : 223 - 233
  • [49] Diastolic Pulmonary Gradient as a Predictor of Right Ventricular Failure After Left Ventricular Assist Device Implantation
    Alnsasra, Hilmi
    Asleh, Rabea
    Schettle, Sarah D.
    Pereira, Naveen L.
    Frantz, Robert P.
    Edwards, Brooks S.
    Clavell, Alfredo L.
    Maltais, Simon
    Daly, Richard C.
    Stulak, John M.
    Rosenbaum, Andrew N.
    Behfar, Atta
    Kushwaha, Sudhir S.
    [J]. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2019, 8 (16):
  • [50] Prognosis of Right Ventricular Failure in Patients With Left Ventricular Assist Device Based on Decision Tree With SMOTE
    Wang, Yajuan
    Simon, Marc
    Bonde, Pramod
    Harris, Bronwyn U.
    Teuteberg, Jeffrey J.
    Kormos, Robert L.
    Antaki, James F.
    [J]. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2012, 16 (03): : 383 - 390