Taming triangulation dependence of T6/Z2 x Z2 resolutions

被引:3
作者
Faraggi, A. E. [1 ]
Nibbelink, S. Groot [2 ,3 ,4 ]
Heredia, M. Hurtado [1 ]
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
[2] Rotterdam Univ Appl Sci, Sch Engn & Appl Sci, GJ Jonghweg 4-6, NL-3015 GG Rotterdam, Netherlands
[3] Rotterdam Univ Appl Sci, Res Ctr Innovat Care, Postbus 25035, NL-3001 HA Rotterdam, Netherlands
[4] Rotterdam Univ Appl Sci, Sch Educ, Museumpk 40, NL-3015 CX Rotterdam, Netherlands
关键词
Differential and Algebraic Geometry; Supergravity Models; Superstring Vacua; Superstrings and Heterotic Strings; YANG-MILLS CONNECTIONS; SPINOR-VECTOR DUALITY; CALABI-YAU MANIFOLDS; STANDARD-LIKE MODEL; MINI-LANDSCAPE; MSSM; CONSTRUCTION; ORBIFOLDS; STRINGS;
D O I
10.1007/JHEP01(2022)169
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Resolutions of certain toroidal orbifolds, like T-6/Z(2) x Z(2), are far from unique, due to triangulation dependence of their resolved local singularities. This leads to an explosion of the number of topologically distinct smooth geometries associated to a single orbifold. By introducing a parameterisation to keep track of the triangulations used at all resolved singularities simultaneously, (self-)intersection numbers and integrated Chern classes can be determined for any triangulation configuration. Using this method the consistency conditions of line bundle models and the resulting chiral spectra can be worked out for any choice of triangulation. Moreover, by superimposing the Bianchi identities for all triangulation options much simpler though stronger conditions are uncovered. When these are satisfied, flop-transitions between all different triangulations are admissible. Various methods are exemplified by a number of concrete models on resolutions of the T-6/Z(2) x Z(2) orbifold.
引用
收藏
页数:35
相关论文
共 55 条
[1]   A Calabi-Yau database: threefolds constructed from the Kreuzer-Skarke list [J].
Altman, Ross ;
Gray, James ;
He, Yang-Hui ;
Jejjala, Vishnu ;
Nelson, Brent D. .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (02)
[2]   Monad bundles in heterotic string compactifications [J].
Anderson, Lara ;
He, Yang-Hui ;
Lukas, Andre .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (07)
[3]   Heterotic compactification, an algorithmic approach [J].
Anderson, Lara B. ;
He, Yang-Hui ;
Lukas, Andre .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (07)
[4]   Exploring positive monad bundles and a new heterotic standard model [J].
Anderson, Lara B. ;
Gray, James ;
He, Yang-Hui ;
Lukas, Andre .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (02)
[5]   Spinor-Vector duality in heterotic string orbifolds [J].
Angelantonj, Carlo ;
Faraggi, Alon E. ;
Tsulaia, Mirian .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (07)
[6]   4-DIMENSIONAL SUPERSTRINGS [J].
ANTONIADIS, I ;
BACHAS, CP ;
KOUNNAS, C .
NUCLEAR PHYSICS B, 1987, 289 (01) :87-108
[7]   4D FERMIONIC SUPERSTRINGS WITH ARBITRARY TWISTS [J].
ANTONIADIS, I ;
BACHAS, C .
NUCLEAR PHYSICS B, 1988, 298 (03) :586-612
[8]   Heterotic free fermionic and symmetric toroidal orbifold models [J].
Athanasopoulos, P. ;
Faraggi, A. E. ;
Nibbelink, S. Groot ;
Mehta, V. M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (04)
[9]   Heterotic MSSM on a resolved orbifold [J].
Blaszczyk, Michael ;
Nibbelink, Stefan Groot ;
Ruehle, Fabian ;
Trapletti, Michele ;
Vaudrevange, Patrick K. S. .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (09)
[10]   A Z2 x Z2 standard model [J].
Blaszczyk, Michael ;
Nibbelink, Stefan Groot ;
Ratz, Michael ;
Ruehle, Fabian ;
Trapletti, Michele ;
Vaudrevange, Patrick K. S. .
PHYSICS LETTERS B, 2010, 683 (4-5) :340-348