Bounds for the maximal function associated to periodic solutions of one-dimensional dispersive equations

被引:34
作者
Moyua, A. [1 ]
Vega, L. [1 ]
机构
[1] Univ Pais Vasco Euskal Herriko Unibertsitatea, Dept Matemat, Bilbao 48080, Spain
关键词
SCHRODINGER-EQUATION; REGULARITY;
D O I
10.1112/blms/bdm096
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give bounds on sup(t) |u (x, t)| for solutions u of dispersive equations on the one-dimensional torus. They are obtained from some improvements on bilinear types of estimate.
引用
收藏
页码:117 / 128
页数:12
相关论文
共 13 条
[1]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107, DOI 10.1007/BF01896020
[2]  
CARBERY A, 1983, RECENT PROGR FOURIER, P49
[3]  
Carleson L., 1979, Lecture Notes in Math., V779, P5
[4]   Maximal functions associated to filtrations [J].
Christ, M ;
Kiselev, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (02) :409-425
[5]  
COWLING M, 1982, LECT NOTES MATH, V992, P83
[6]  
Dahlberg B.E., 1982, Lecture Notes in Math., V908, P205
[7]   OSCILLATORY INTEGRALS AND REGULARITY OF DISPERSIVE EQUATIONS [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (01) :33-69
[8]   A STRONG TYPE (2,2) ESTIMATE FOR A MAXIMAL OPERATOR ASSOCIATED TO THE SCHRODINGER-EQUATION [J].
KENIG, CE ;
RUIZ, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 280 (01) :239-246
[9]   REGULARITY OF SOLUTIONS TO THE SCHRODINGER-EQUATION [J].
SJOLIN, P .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (03) :699-715