Quasiparticle interference from magnetic impurities

被引:32
作者
Derry, Philip G. [1 ]
Mitchell, Andrew K. [1 ,2 ]
Logan, David E. [1 ]
机构
[1] Univ Oxford, Dept Chem Phys & Theoret Chem, Oxford OX1 3QZ, England
[2] Univ Utrecht, Inst Theoret Phys, NL-3584 CE Utrecht, Netherlands
来源
PHYSICAL REVIEW B | 2015年 / 92卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
SCANNING TUNNELING SPECTROSCOPY; RENORMALIZATION-GROUP APPROACH; LOCAL ATOMIC ENVIRONMENT; LATTICE GREENS-FUNCTIONS; FOURIER-TRANSFORM-STM; GAPLESS FERMI SYSTEMS; TIGHT-BINDING BANDS; ELECTRONIC-STRUCTURE; ANDERSON MODEL; STATIC PROPERTIES;
D O I
10.1103/PhysRevB.92.035126
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fourier transform scanning tunneling spectroscopy (FT-STS) measures the scattering of conduction electrons from impurities and defects, giving information about the electronic structure of both the host material and adsorbed impurities. We interpret such FT-STS measurements in terms of the quasiparticle interference (QPI), here investigating in detail the QPI due to single magnetic impurities adsorbed on a range of representative nonmagnetic host surfaces, and contrasting with the case of a simple scalar impurity or point defect. We demonstrate how the electronic correlations present for magnetic impurities markedly affect the QPI, showing, e.g., a large intensity enhancement due to the Kondo effect, and universality at low temperatures/scanning energies. The commonly used joint density of states interpretation of FT-STS measurements is also considered, and shown to be insufficient in many cases, including that of magnetic impurities.
引用
收藏
页数:17
相关论文
共 79 条
[1]   Real-time dynamics in quantum-impurity systems: A time-dependent numerical renormalization-group approach [J].
Anders, FB ;
Schiller, A .
PHYSICAL REVIEW LETTERS, 2005, 95 (19)
[2]   LOCALIZED MAGNETIC STATES IN METALS [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1961, 124 (01) :41-&
[3]  
[Anonymous], 1997, The Kondo problem to heavy fermions
[4]  
[Anonymous], 2001, PHYS REV B, V64
[5]  
[Anonymous], 1960, Sov. Phys. Uspekhi
[6]   Efficient computation of lattice Green's functions for models with nearest-neighbour hopping [J].
Berciu, M. ;
Cook, A. M. .
EPL, 2010, 92 (04)
[7]   On computing the square lattice Green's function without any integrations [J].
Berciu, Mona .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (39)
[8]   Quasiparticle Chirality in Epitaxial Graphene Probed at the Nanometer Scale [J].
Brihuega, I. ;
Mallet, P. ;
Bena, C. ;
Bose, S. ;
Michaelis, C. ;
Vitali, L. ;
Varchon, F. ;
Magaud, L. ;
Kern, K. ;
Veuillen, J. Y. .
PHYSICAL REVIEW LETTERS, 2008, 101 (20)
[9]   Lanczos transformation for quantum impurity problems in d-dimensional lattices: Application to graphene nanoribbons [J].
Buesser, C. A. ;
Martins, G. B. ;
Feiguin, A. E. .
PHYSICAL REVIEW B, 2013, 88 (24)
[10]   Numerical renormalization group calculations for the self-energy of the impurity Anderson model [J].
Bulla, R ;
Hewson, AC ;
Pruschke, T .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (37) :8365-8380