Evaluation of performance of pelvic CT-MR deformable image registration using two software programs

被引:9
|
作者
Ishida, Tomoya [1 ]
Kadoya, Noriyuki [1 ]
Tanabe, Shunpei [1 ]
Ohashi, Haruna [2 ]
Nemoto, Hikaru [1 ,4 ]
Dobashi, Suguru [3 ]
Takeda, Ken [3 ]
Jingu, Keiichi [1 ]
机构
[1] Tohoku Univ, Dept Radiat Oncol, Grad Sch Med, Sendai, Miyagi 9808574, Japan
[2] Tohoku Univ, Dept Radiat Technol, Grad Sch Hlth Sci, Sendai, Miyagi 9808574, Japan
[3] Tohoku Univ, Fac Med, Sch Hlth Sci, Dept Radiol Technol, Sendai, Miyagi 9808574, Japan
[4] Komagome Hosp, Tokyo Metropolitan Canc & Infect Dis Ctr, Tokyo 1138677, Japan
关键词
MRI-guided radiotherapy; deformable image registration (DIR); cost function; pelvis; GUIDED RADIOTHERAPY; ADAPTIVE RADIOTHERAPY; ALGORITHMS; ACCURACY; THERAPY; HEAD;
D O I
10.1093/jrr/rrab078
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We assessed the accuracy of deformable image registration (DIR) accuracy between CT and MR images using an open-source software (Elastix, from Utrecht Medical Center) and a commercial software (Velocity AI Ver. 3.2.0 from Varian Medical Systems, Palo Alto, CA, USA) software. Five male patients' pelvic regions were studied using publicly available CT, T1-weighted (T1w) MR, and T2-weighted (T2w) MR images. In the cost function of the Elastix, we used six DIR parameter settings with different regularization weights (Elastix(0), Elastix(0.01), Elastix(0.1), Elastix(1),Elastix(10) and Elastixi(100)). We used MR Corrected Deformable algorithm for Velocity AI. The Dice similarity coefficient (DSC) and mean distance to agreement (MDA) for the prostate, bladder, rectum and left and right femoral heads were used to evaluate DIR accuracy. Except for the bladder, most algorithms produced good DSC and MDA results for all organs. In our study, the mean DSCs for the bladder ranged from 0.75 to 0.88 (CT-Tlw) and from 0.72 to 0.76 (CT-T2w). Similarly, the mean MDA ranges were 2.4 to 4.9 mm (CT-Tlw), 4.6 to 5.3 mm (CT-T2w). For the Elastix, CT-T1w was outperformed CT-T2w for both DSCs and MDAs at Elastix0, Elastix0.01, and Elastix0.1. In the case of Velocity AI, no significant differences in DSC and MDA of all organs were observed. This implied that the DIR accuracy of CT and MR images might differ depending on the sequence used.
引用
收藏
页码:1076 / 1082
页数:7
相关论文
共 50 条
  • [41] CLINICAL SIGNIFICANCE OF USING CT-MR FUSION IMAGE IN BRACHYTHERAPY FOR UTERINE CERVICAL CANCER
    Kim, J.
    Lee, S. H.
    RADIOTHERAPY AND ONCOLOGY, 2010, 96 : S209 - S209
  • [42] Impact of CT scan parameters on deformable image registration accuracy using deformable thorax phantom
    Ikeda, Ryutaro
    Kadoya, Noriyuki
    Nakajima, Yujiro
    Ishii, Shin
    Shibu, Takayuki
    Jingu, Keiichi
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2023, 24 (05):
  • [43] Evaluation of deformable image registration and a motion model in CT images with limited features
    Liu, F.
    Hu, Y.
    Zhang, Q.
    Kincaid, R.
    Goodman, K. A.
    Mageras, G. S.
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (09):
  • [44] Performance Evaluation of Deformable Image Registration Algorithms Using Computed Tomography of Multiple Lung Metastases
    Han, Min Cheol
    Kim, Jihun
    Hong, Chae-Seon
    Chang, Kyung Hwan
    Han, Su Chul
    Park, Kwangwoo
    Kim, Dong Wook
    Kim, Hojin
    Chang, Jee Suk
    Kim, Jina
    Kye, Sunsuk
    Park, Ryeong Hwang
    Chung, Yoonsun
    Kim, Jin Sung
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2022, 21
  • [45] A momentum-based diffeomorphic demons framework for deformable MR-CT image registration
    Han, R.
    De Silva, T.
    Ketcha, M.
    Uneri, A.
    Siewerdsen, J. H.
    PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (21):
  • [46] Customized Deformable Image Registration Using Open-Source Software SlicerRT
    Gaitan, J. Cifuentes
    Kirby, N.
    Lasso, A.
    Chin, L.
    Pinter, C.
    Pignol, J.
    Fichtinger, G.
    Pouliot, J.
    MEDICAL PHYSICS, 2014, 41 (06) : 164 - 164
  • [47] Comparison of liver metastases volumes on CT, MR and FDG PET imaging to pathological resection using deformable image registration
    Dawson, L. A.
    Brock, K. K.
    Moulton, C.
    Moseley, J.
    Ahmed, S.
    Guindi, M.
    Gallimer, S.
    Haider, M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 69 (03): : S68 - S68
  • [48] Registration error of the liver CT using deformable image registration of MIM Maestro and Velocity AI
    Nobuyoshi Fukumitsu
    Kazunori Nitta
    Toshiyuki Terunuma
    Toshiyuki Okumura
    Haruko Numajiri
    Yoshiko Oshiro
    Kayoko Ohnishi
    Masashi Mizumoto
    Teruhito Aihara
    Hitoshi Ishikawa
    Koji Tsuboi
    Hideyuki Sakurai
    BMC Medical Imaging, 17
  • [49] Assessment of Deformable Image Registration Algorithms by Using Different Similarity Measures for the Registration Evaluation
    Jurkovic, I.
    Papanikolaou, N.
    Stathakis, S.
    Mavroidis, P.
    MEDICAL PHYSICS, 2015, 42 (06) : 3286 - 3287
  • [50] Registration error of the liver CT using deformable image registration of MIM Maestro and Velocity AI
    Fukumitsu, Nobuyoshi
    Nitta, Kazunori
    Terunuma, Toshiyuki
    Okumura, Toshiyuki
    Numajiri, Haruko
    Oshiro, Yoshiko
    Ohnishi, Kayoko
    Mizumoto, Masashi
    Aihara, Teruhito
    Ishikawa, Hitoshi
    Tsuboi, Koji
    Sakurai, Hideyuki
    BMC MEDICAL IMAGING, 2017, 17