Interfacial acoustic waves in one-dimensional anisotropic phononic bicrystals with a symmetric unit cell

被引:8
作者
Darinskii, A. N. [1 ]
Shuvalov, A. L. [2 ]
机构
[1] Russian Acad Sci, FSRC Crystallog & Photon, Inst Crystallog, Leninskii Pr 59, Moscow 119333, Russia
[2] Univ Bordeaux, CNRS, UMR 5295, Talence 33405, France
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2019年 / 475卷 / 2231期
关键词
interfacial acoustic wave; phononic crystal; elastic anisotropy; transfer matrix; surface impedance; ISOTROPIC ELASTIC MEDIA; PERIODICALLY LAYERED INFINITE; STONELEY WAVES; RAYLEIGH-WAVES; SURFACE-WAVES; HALF-SPACES; PROPAGATION; EXISTENCE; SUPERLATTICES;
D O I
10.1098/rspa.2019.0371
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper is concerned with the interfacial acoustic waves localized at the internal boundary of two different perfectly bonded semi-infinite one-dimensional phononic crystals represented by periodically layered or functionally graded elastic structures. The unit cell is assumed symmetric relative to its midplane, whereas the constituent materials may be of arbitrary anisotropy. The issue of the maximum possible number of interfacial waves per full stop band of a phononic bicrystal is investigated. It is proved that, given a fixed tangential wavenumber, the lowest stop band admits at most one interfacial wave, while an upper stop band admits up to three interfacial waves. The results obtained for the case of generally anisotropic bicrystals are specialized for the case of a symmetric sagittal plane.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] One-dimensional phononic crystal for sound insulation in rods
    Wasmer, Paul
    Prager, Jens
    TM-TECHNISCHES MESSEN, 2019, 86 (02) : 66 - 72
  • [42] One-dimensional phononic crystals with locally resonant structures
    Wang, G
    Yu, DL
    Wen, JH
    Liu, YZ
    Wen, XS
    PHYSICS LETTERS A, 2004, 327 (5-6) : 512 - 521
  • [43] Ultrasonic waves in uniaxially stressed multilayered and one-dimensional phononic structures: Guided and Floquet wave analysis
    Demcenko, Andriejus
    Wilson, Rab
    Cooper, Jonathan M.
    Mazilu, Michael
    Volker, Arno W. F.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 144 (01) : 81 - 91
  • [44] Generalized thermoelastic band structures of Rayleigh wave in one-dimensional phononic crystals
    Wu, Ying
    Yu, Kaiping
    Yang, Linyun
    Zhao, Rui
    MECCANICA, 2018, 53 (4-5) : 923 - 935
  • [45] Investigation of one-dimensional finite phononic crystal with exponential section
    Fu Zhi-Qiang
    Lin Shu-Yu
    Chen Shi
    Xian Xiao-Jun
    Zhang Xiao-Li
    Wang Yong
    ACTA PHYSICA SINICA, 2012, 61 (19)
  • [46] Hypersonic phonon propagation in one-dimensional surface phononic crystal
    Graczykowski, B.
    Sledzinska, M.
    Kehagias, N.
    Alzina, F.
    Reparaz, J. S.
    Sotomayor Torres, C. M.
    APPLIED PHYSICS LETTERS, 2014, 104 (12)
  • [47] Thickness-modulated one-dimensional periodic phononic crystal
    Xie, Ya-Zhuo
    Qi, Hai-Feng
    Zhao, Min
    Fang, Hui
    Gao, Jian
    Zhang, Xing-Gan
    ADVANCED ENGINEERING MATERIALS III, PTS 1-3, 2013, 750-752 : 1207 - 1210
  • [48] Thermal Tuning of Band Structures in a One-Dimensional Phononic Crystal
    Bian, Zuguang
    Peng, Wei
    Song, Jizhou
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2014, 81 (04):
  • [49] Multi-band design for one-dimensional phononic crystals
    Zhang Pei
    Wang ZhenYu
    Zhang YongQiang
    Liang Xu
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2013, 56 (07) : 1253 - 1262
  • [50] Acoustic Add-Drop filter involving a ring resonator based on a One-Dimensional surface phononic crystal
    Bicer, Ahmet
    ULTRASONICS, 2021, 117