Optimized performances of core-shell structured LiFePO4/C nanocomposite

被引:74
作者
Liu, W. L.
Tu, J. P. [1 ]
Qiao, Y. Q.
Zhou, J. P.
Shi, S. J.
Wang, X. L.
Gu, C. D.
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
关键词
Lithium iron phosphate; Poly(vinvl alcohol); Carbon-shell; Diffusion coefficient; Low temperature; LITHIUM-ION BATTERIES; CATHODE MATERIALS; ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIALS; POSITIVE-ELECTRODE; STORAGE DEVICES; ANODE MATERIAL; CARBON; ENERGY; POWER;
D O I
10.1016/j.jpowsour.2011.05.046
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A nanosized LiFePO4/C composite with a complete and thin carbon-shell is synthesized via a ball-milling route followed by solid-state reaction using poly(vinvl alcohol) as carbon source. The LiFePO4/C nanocomposite delivers discharge capacities of 159, 141, 124 and 112 mAh g(-1) at 1 C, 5 C, 15 C and 20 C, respectively. Even at a charge-discharge rate of 30 C, there is still a high discharge capacity of 107 mAh g(-1) and almost no capacity fading after 1000 cycles. Based on the analysis of cyclic voltammograms, the apparent diffusion coefficients of Li ions in the composite are in the region of 2.42 x 10(-11) cm(2) s(-1) and 2.80 x 10(-11) cm(2) s(-1). Electrochemical impedance spectroscopy and galvanostatic intermittent titration technique are also used to calculate the diffusion coefficients of Li ions in the LiFePO4/C electrode, they are in the range of 10(-11)-10(-14) cm(2) s(-1). addition, at -20 degrees C. it can still deliver a discharge capacity of 122 mAh g(-1), 90 mAh g(-1) and 80 mAh g(-1) at the charge-discharge rates of 0.1 C. 0.5 C and 1 C, respectively. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:7728 / 7735
页数:8
相关论文
共 48 条
  • [1] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    [J]. NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [2] TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte
    Armstrong, Graham
    Armstrong, A. Robert
    Bruce, Peter G.
    Reale, Priscilla
    Scrosati, Bruno
    [J]. ADVANCED MATERIALS, 2006, 18 (19) : 2597 - +
  • [3] Bard AllenJ., 2001, Electrochemical Methods: Fundamentals and Applications, V2, P226
  • [4] Plug-in hybrid electric vehicle charge pattern optimization for energy cost and battery longevity
    Bashash, Saeid
    Moura, Scott J.
    Forman, Joel C.
    Fathy, Hosam K.
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (01) : 541 - 549
  • [5] Electron microscopy study of the LiFePO4 to FePO4 phase transition
    Chen, GY
    Song, XY
    Richardson, TJ
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (06) : A295 - A298
  • [6] Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density
    Chen, ZH
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) : A1184 - A1189
  • [7] A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode
    Croce, F
    D'Epifanio, A
    Hassoun, J
    Deptula, A
    Olczac, T
    Scrosati, B
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (03) : A47 - A50
  • [8] Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process
    Cui, Yan
    Zhao, Xiaoli
    Guo, Ruisong
    [J]. ELECTROCHIMICA ACTA, 2010, 55 (03) : 922 - 926
  • [9] Size effects on carbon-free LiFePO4 powders
    Delacourt, C.
    Poizot, P.
    Levasseur, S.
    Masquelier, C.
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (07) : A352 - A355
  • [10] The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1
    Delacourt, C
    Poizot, P
    Tarascon, JM
    Masquelier, C
    [J]. NATURE MATERIALS, 2005, 4 (03) : 254 - 260