Medical Image Fusion via Convolutional Sparsity Based Morphological Component Analysis

被引:245
作者
Liu, Yu [1 ]
Chen, Xun [2 ,3 ]
Ward, Rabab K. [4 ]
Wang, Z. Jane [4 ]
机构
[1] Hefei Univ Technol, Dept Biomed Engn, Hefei 230009, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Elect Sci & Technol, Hefei 230026, Anhui, Peoples R China
[4] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
基金
中国国家自然科学基金;
关键词
Medical image fusion; sparse representation (SR); morphological component analysis (MCA); convolutional sparse representation (CSR); dictionary learning; MULTI-FOCUS; REPRESENTATION; INFORMATION; TRANSFORM;
D O I
10.1109/LSP.2019.2895749
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, a sparse representation (SR) model named convolutional sparsity based morphological component analysis (CS-MCA) is introduced for pixel-level medical image fusion. Unlike the standard SR model, which is based on single image component and overlapping patches, the CS-MCA model can simultaneously achieve multi-component and global SRs of source images, by integrating MCA and convolutional sparse representation (CSR) into a unified optimization framework. For each source image, in the proposed fusion method, the CSRs of its cartoon and texture components are first obtained by the CS-MCA model using pre-learned dictionaries. Then, for each image component, the sparse coefficients of all the source images are merged and the fused component is accordingly reconstructed using the corresponding dictionary. Finally, the fused image is calculated as the superposition of the fused cartoon and texture components. Experimental results demonstrate that the proposed method can outperform some benchmarking and state-of-the-art SR-based fusion methods in terms of both visual perception and objective assessment.
引用
收藏
页码:485 / 489
页数:5
相关论文
共 46 条
[1]   Directive Contrast Based Multimodal Medical Image Fusion in NSCT Domain [J].
Bhatnagar, Gaurav ;
Wu, Q. M. Jonathan ;
Liu, Zheng .
IEEE TRANSACTIONS ON MULTIMEDIA, 2013, 15 (05) :1014-1024
[2]   Multi-Focus Image Fusion Based on Spatial Frequency in Discrete Cosine Transform Domain [J].
Cao, Liu ;
Jin, Longxu ;
Tao, Hongjiang ;
Li, Guoning ;
Zhuang, Zhuang ;
Zhang, Yanfu .
IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (02) :220-224
[3]   Robust Multi-Focus Image Fusion Using Edge Model and Multi-Matting [J].
Chen, Yibo ;
Guan, Jingwei ;
Cham, Wai-Kuen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) :1526-1541
[4]   A new automated quality assessment algorithm for image fusion [J].
Chen, Yin ;
Blum, Rick S. .
IMAGE AND VISION COMPUTING, 2009, 27 (10) :1421-1432
[5]   MRI and PET image fusion by combining IHS and retina-inspired models [J].
Daneshvar, Sabalan ;
Ghassemian, Hassan .
INFORMATION FUSION, 2010, 11 (02) :114-123
[6]   A Neuro-Fuzzy Approach for Medical Image Fusion [J].
Das, Sudeb ;
Kundu, Malay Kumar .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (12) :3347-3353
[7]   Anatomical-Functional Image Fusion by Information of Interest in Local Laplacian Filtering Domain [J].
Du, Jiao ;
Li, Weisheng ;
Xiao, Bin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (12) :5855-5866
[8]  
Elad M, 2010, SPARSE AND REDUNDANT REPRESENTATIONS, P3, DOI 10.1007/978-1-4419-7011-4_1
[9]   Perceptual Image Fusion Using Wavelets [J].
Hill, Paul ;
Al-Mualla, Mohammed Ebrahim ;
Bull, David .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (03) :1076-1088
[10]   Image fusion performance metric based on mutual information and entropy driven quadtree decomposition [J].
Hossny, M. ;
Nahavandi, S. ;
Creighton, D. ;
Bhatti, A. .
ELECTRONICS LETTERS, 2010, 46 (18) :1266-U45