Rapid Mineralization of Electrospun Scaffolds for Bone Tissue Engineering

被引:27
|
作者
Andric, Tea [1 ]
Wright, Lee D. [1 ]
Freeman, Joseph W. [1 ]
机构
[1] Virginia Tech Wake Forest Univ, Sch Biomed Engn & Sci, Blacksburg, VA 24061 USA
关键词
Bone tissue engineering; electrospinning; mineralization; simulated body fluid; calcium phosphate; poly(L-lactide); gelatin; CALCIUM-PHOSPHATE; HYDROXYAPATITE; GELATIN; FIBERS; ACID);
D O I
10.1163/092050610X514241
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We investigated different techniques to enhance calcium phosphate mineral precipitation onto electrospun poly(L-lactide) (PLLA) scaffolds when incubated in concentrated simulated body fluid (SBF), 10xSBF. The techniques included the use of vacuum, pre-treatment with 0.1 M NaOH and electrospinning gelatin/PLLA blends as means to increase overall mineral precipitation and distribution throughout the scaffolds. Mineral precipitation was evaluated using environmental scanning electron microscopy, energy dispersive spectroscopy mapping and the determination of the mineral weight percents. In addition we evaluated the effect of the techniques on mechanical properties, cellular attachment and cellular proliferation on scaffolds. Two treatments, pre-treatment with NaOH and incorporation of 10% gelatin into PLLA solution, both in combination with vacuum, resulted in significantly higher degrees of mineralization (16.55 and 15.14%, respectively) and better mineral distribution on surfaces and through the cross-sections after 2 h of exposure to 10xSBF. While both scaffold groups supported cell attachment and proliferation, 10% gelatin/PLLA scaffolds had significantly higher yield stress (1.73 vs 0.56 MPa) and elastic modulus (107 vs 44 MPa) than NaOH-pre-treated scaffolds. (C) Koninklijke Brill NV, Leiden, 2011
引用
收藏
页码:1535 / 1550
页数:16
相关论文
共 50 条
  • [41] Evaluation of the effects of starch on polyhydroxybutyrate electrospun scaffolds for bone tissue engineering applications
    Asl, Maryam Abdollahi
    Karbasi, Saeed
    Beigi-Boroujeni, Saeed
    Benisi, Soheila Zamanlui
    Saeed, Mahdi
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 191 : 500 - 513
  • [42] Application of electrospun nanofibers in bone, cartilage and osteochondral tissue engineering
    Ding, Huixiu
    Cheng, Yizhu
    Niu, Xiaolian
    Hu, Yinchun
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2020, 32 (04) : 536 - 561
  • [43] Electrospun scaffolds for tissue engineering of vascular grafts
    Hasan, Anwarul
    Memic, Adnan
    Annabi, Nasim
    Hossain, Monowar
    Paul, Arghya
    Dokmeci, Mehmet R.
    Dehghani, Fariba
    Khademhosseini, Ali
    ACTA BIOMATERIALIA, 2014, 10 (01) : 11 - 25
  • [44] Electrospun polycaprolactone scaffolds for tissue engineering: a review
    Janmohammadi, M.
    Nourbakhsh, M. S.
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2019, 68 (09) : 527 - 539
  • [45] Electrospun Scaffolds for Corneal Tissue Engineering: A Review
    Kong, Bin
    Mi, Shengli
    MATERIALS, 2016, 9 (08):
  • [46] Incorporating Protein Gradient into Electrospun Nanofibers As Scaffolds for Tissue Engineering
    Shi, Jian
    Wang, Li
    Zhang, Fan
    Li, Hao
    Lei, Lei
    Liu, Li
    Chen, Yong
    ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (04) : 1025 - 1030
  • [47] Mineralization of Electrospun PEG/PDLLA Scaffolds
    Wang, Beiyu
    Liu, Chenlu
    Qu, Ying
    Peng, Jinrong
    Chu, Bingyang
    Wu, Tingkui
    Huang, Kangkang
    Qian, Zhiyong
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2017, 9 (11) : 1781 - 1785
  • [48] Hydrophilic Surface Functionalization of Electrospun Nanofibrous Scaffolds in Tissue Engineering
    Niemczyk-Soczynska, Beata
    Gradys, Arkadiusz
    Sajkiewicz, Pawel
    POLYMERS, 2020, 12 (11) : 1 - 20
  • [49] Electrospun blends of natural and synthetic polymers as scaffolds for tissue engineering
    Li, Mengyan
    Mondrinos, Mark J.
    Chen, Xuesi
    Lelkes, Peter I.
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 5858 - 5861
  • [50] Investigation of Apatite Mineralization on Antioxidant Polyphosphazenes for Bone Tissue Engineering
    Morozowich, Nicole L.
    Nichol, Jessica L.
    Allcock, Harry R.
    CHEMISTRY OF MATERIALS, 2012, 24 (17) : 3500 - 3509