Adaptive quantization and filtering using Gauss-Markov measure field models

被引:6
|
作者
Marroquin, JL [1 ]
Botello, S [1 ]
Rivera, M [1 ]
机构
[1] Ctr Invest & Matemat, Guanajuato, Mexico
来源
关键词
D O I
10.1117/12.323803
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new class of models, derived from classical Markov Random Fields, that may be used for the solution of ill-posed problems in image processing and computational vision. They lead to reconstrucion algorithms that are flexible, computationally efficient and biologically plausible. To illustrate their use, we present their application to the reconstruction of the dominant orientation field and to the adaptive quantization and filtering of images in a variety of situations.
引用
收藏
页码:238 / 249
页数:12
相关论文
共 50 条
  • [21] On equalities for BLUEs under misspecified Gauss-Markov models
    Tian, Yong Ge
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (11) : 1907 - 1920
  • [22] THE GAUSS-MARKOV THEOREM FOR NON-LINEAR MODELS
    LOUTON, T
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (06) : 1296 - 1301
  • [23] On the existence of the Gauss-Markov estimators in linear mixed models
    Gabriela Beganu
    Revista Matemática Complutense, 2010, 23 : 489 - 499
  • [24] On equalities for BLUEs under misspecified Gauss-Markov models
    Yong Ge Tian
    Acta Mathematica Sinica, English Series, 2009, 25 : 1907 - 1920
  • [25] Reconstruction of emission tomographic images using the compound Gauss-Markov random field
    Kudo, Hiroyuki
    Saito, Tsuneo
    Systems and Computers in Japan, 1993, 24 (04) : 78 - 87
  • [26] ANALYSIS OF ADAPTIVE DIFFERENTIAL PCM OF A STATIONARY GAUSS-MARKOV INPUT
    GERR, NL
    CAMBANIS, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (03) : 350 - 359
  • [27] Robust Image Segmentation based on Superpixels and Gauss-Markov Measure Fields
    Reyes, Alejandro
    Rubio-Rincon, Miguel E.
    Mendez, Martin O.
    Arce-Santana, Edgar R.
    Alba, Alfonso
    PROCEEDINGS OF A SPECIAL SESSION 2017 SIXTEENTH MEXICAN INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (MICAI): ADVANCES IN ARTIFICIAL INTELLIGENCE, 2017, : 46 - 52
  • [28] American option pricing in Gauss-Markov interest rate models
    Galluccio, S
    PHYSICA A, 1999, 269 (01): : 61 - 71
  • [29] CONSISTENCY OF LEAST SQUARES AND GAUSS-MARKOV ESTIMATORS IN REGRESSION MODELS
    DRYGAS, H
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 17 (04): : 309 - &
  • [30] Bayesian selection of the neighbourhood order for Gauss-Markov texture models
    Stan, S
    Palubinskas, G
    Datcu, M
    PATTERN RECOGNITION LETTERS, 2002, 23 (10) : 1229 - 1238