Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas

被引:61
作者
Hobbs, Richard G. [1 ,2 ,3 ,4 ]
Putnam, William P. [1 ,5 ,6 ,7 ]
Fallahi, Arya [8 ]
Yang, Yujia [1 ]
Kaertner, Franz X. [1 ,5 ,6 ,8 ]
Berggren, Karl K. [1 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] Trinity Coll Dublin, CRANN, Dublin 2, Ireland
[3] Trinity Coll Dublin, Adv Mat Bioengn Res Ctr AMBER, Dublin 2, Ireland
[4] Trinity Coll Dublin, Sch Chem, Dublin 2, Ireland
[5] Univ Hamburg, Dept Phys, Hamburg, Germany
[6] Univ Hamburg, Ctr Ultrafast Imaging, Hamburg, Germany
[7] NG Next, Northrop Grumman Corp, Redondo Beach, CA 90254 USA
[8] DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany
基金
爱尔兰科学基金会;
关键词
Nanoantennas; hot electrons; photoemission; plasmonics; charge transfer; plasmon decay; PHOTOELECTRON-SPECTROSCOPY; POLY(METHYL METHACRYLATE); METAL NANOSTRUCTURES; GOLD NANOPARTICLES; EMITTER ARRAYS; ULTRAFAST; ENERGY; NANOSCALE; ULTRAVIOLET; AU;
D O I
10.1021/acs.nanolett.7b02495
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Understanding plasmon-mediated electron emission and energy transfer on the nanometer length scale is critical to controlling light matter interactions at nanoscale dimensions. In a high-resolution lithographic material, electron emission and energy transfer lead to chemical transformations. In this work, we employ such chemical transformations in two different high-resolution electron-beam lithography resists, poly(methyl methacrylate) (PMMA) and hydrogen silsesquioxane (HSQ), to map local electron emission and energy transfer with nanometer resolution from plasmonic nanoantennas excited by femtosecond laser pulses. We observe exposure of the electron-beam resists (both PMMA and HSQ) in regions on the surface of nanoantennas where the local field is significantly enhanced. Exposure in these regions is consistent with previously reported optical-field-controlled electron emission from plasmonic hotspots as well as earlier work on low-electron-energy scanning probe lithography. For HSQ, in addition to exposure in hotspots, we observe resist exposure at the centers of rod-shaped nanoantennas in addition to exposure in plasmonic hotspots. Optical field enhancement is minimized at the center of nanorods suggesting that exposure in these regions involves a different mechanism to that in plasmonic hotspots. Our simulations suggest that exposure at the center of nanorods results from the emission of hot electrons produced via plasmon decay in the nanorods. Overall, the results presented in this work provide a means to map both optical-field-controlled electron emission and hot-electron transfer from nanoparticles via chemical transformations produced locally in lithographic materials.
引用
收藏
页码:6069 / 6076
页数:8
相关论文
共 68 条
  • [21] Controlling Nanowire Growth by Light
    Di Martino, G.
    Michaelis, F. B.
    Salmon, A. R.
    Hofmann, S.
    Baumberg, J. J.
    [J]. NANO LETTERS, 2015, 15 (11) : 7452 - 7457
  • [22] Ultrafast Strong-Field Photoemission from Plasmonic Nanoparticles
    Dombi, Peter
    Hoerl, Anton
    Racz, Peter
    Marton, Istvan
    Truegler, Andreas
    Krenn, Joachim R.
    Hohenester, Ulrich
    [J]. NANO LETTERS, 2013, 13 (02) : 674 - 678
  • [23] Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures
    Dregely, Daniel
    Neubrech, Frank
    Duan, Huigao
    Vogelgesang, Ralf
    Giessen, Harald
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [24] Sub-10-nm half-pitch electron-beam lithography by using poly(methyl methacrylate) as a negative resist
    Duan, Huigao
    Winston, Donald
    Yang, Joel K. W.
    Cord, Bryan M.
    Manfrinato, Vitor R.
    Berggren, Karl K.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (06): : C6C58 - C6C62
  • [25] Metrology for electron-beam lithography and resist contrast at the sub-10 nm scale
    Duan, Huigao
    Manfrinato, Vitor R.
    Yang, Joel K. W.
    Winston, Donald
    Cord, Bryan M.
    Berggren, Karl K.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (06): : C6H11 - C6H17
  • [26] Control and Near-Field Detection of Surface Plasmon Interference Patterns
    Dvorak, Petr
    Neuman, Tomas
    Brinek, Lukas
    Samoril, Tomas
    Kalousek, Radek
    Dub, Petr
    Varga, Peter
    Sikola, Tomas
    [J]. NANO LETTERS, 2013, 13 (06) : 2558 - 2563
  • [27] Field-based DGTD/PIC technique for general and stable simulation of interaction between light and electron bunches
    Fallahi, Arya
    Kaertner, Franz
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2014, 47 (23)
  • [28] Harutyunyan H, 2015, NAT NANOTECHNOL, V10, P770, DOI [10.1038/nnano.2015.165, 10.1038/NNANO.2015.165]
  • [29] Surface plasmon-enhanced photoluminescence from a single quantum well
    Hecker, NE
    Hopfel, RA
    Sawaki, N
    Maier, T
    Strasser, G
    [J]. APPLIED PHYSICS LETTERS, 1999, 75 (11) : 1577 - 1579
  • [30] High-density Au nanorod optical field-emitter arrays
    Hobbs, R. G.
    Yang, Y.
    Keathley, P. D.
    Swanwick, M. E.
    Velasquez-Garcia, L. F.
    Kaertner, F. X.
    Graves, W. S.
    Berggren, K. K.
    [J]. NANOTECHNOLOGY, 2014, 25 (46)