Evaluation of modeled microwave land surface emissivities with satellite-based estimates

被引:39
作者
Prigent, C. [1 ,2 ]
Liang, P. [3 ]
Tian, Y. [4 ,5 ]
Aires, F. [6 ,7 ]
Moncet, J. -L. [3 ]
Boukabara, S. A. [8 ]
机构
[1] Observ Paris, Lab Etudes Rayonnement & Matiere Astrophys, CNRS, F-75014 Paris, France
[2] Estellus, Paris, France
[3] Atmospher & Environm Res Inc, Lexington, MA USA
[4] NASA Goddard Space Flight Ctr, Greenbelt, MD USA
[5] Univ Maryland, ESSIC, College Pk, MD 20742 USA
[6] Estellus, Lab Etude Rayonnement & Matiere Astrophy, Paris, France
[7] Observ Paris, CNRS, F-75014 Paris, France
[8] NOAA, Joint Ctr Satellite Data Assimilat, NESDIS STAR, College Pk, MD USA
关键词
microwave emissivity; NUMERICAL WEATHER PREDICTION; SYSTEM; VALIDATION;
D O I
10.1002/2014JD021817
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
An accurate estimate of the microwave surface emissivity is necessary for the retrieval of atmospheric quantities from microwave imagers or sounders. The objective of this study is to evaluate the microwave land surface emissivity modeling of the Community Radiative Transfer Model (CRTM), providing quantitative statistic information for further model improvements. First, the model-simulated emissivity is compared to emissivity estimates derived from satellite observations (TELSEM, Tool to Estimate Land Surface Emissivities at Microwaves). The model simulations agree reasonably well with TELSEM over snow-free vegetated areas, especially at vertical polarization up to 40GHz. For snow-free surfaces, the mean difference between CRTM and TELSEM emissivities at vertical polarization is lower than 0.01 below 40GHz and increases to 0.02 at 89GHz. At horizontal polarization, it increases with frequency, from 0.01 at 10.6GHz to 0.04 at 89GHz. Over deserts and snow, larger differences are observed, which can be due to the lack of quality inputs to the model in these complex environments. A further evaluation is provided by comparing brightness temperature (Tbs) simulations with AMSR-E observations, where CRTM emissivity and TELSEM emissivity are coupled into a comprehensive radiative transfer model to simulate the brightness temperatures, respectively. The comparison shows smaller RMS errors with the satellite-derived estimates than with the model, despite some significant bias at midday with the satellite-derived emissivities at high frequencies. This study confirms and extends to the global scale previous evaluations of land surface microwave emissivity model. It emphasizes the needs for better physical modeling in arid regions and over snow-covered surfaces. Key Points
引用
收藏
页码:2706 / 2718
页数:13
相关论文
共 31 条
[1]   A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction [J].
Aires, Filipe ;
Prigent, Catherine ;
Bernardo, Frederic ;
Jimenez, Carlos ;
Saunders, Roger ;
Brunel, Pascal .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :690-699
[2]   An Innovative Calibration Method for the Inversion of Satellite Observations [J].
Aires, Filipe ;
Bernardo, Frederic ;
Brogniez, Helene ;
Prigent, Catherine .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2010, 49 (12) :2458-2473
[3]   Atmospheric water-vapour profiling from passive microwave sounders over ocean and land. Part II: Validation using existing instruments [J].
Bernardo, Frederic ;
Aires, Filipe ;
Prigent, Catherine .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2013, 139 (673) :865-878
[4]   Atmospheric radiative transfer modeling: a summary of the AER codes [J].
Clough, SA ;
Shephard, MW ;
Mlawer, E ;
Delamere, JS ;
Iacono, M ;
Cady-Pereira, K ;
Boukabara, S ;
Brown, PD .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2005, 91 (02) :233-244
[5]  
DERBER JC, 1991, WEATHER FORECAST, V6, P538, DOI 10.1175/1520-0434(1991)006<0538:TNGOAS>2.0.CO
[6]  
2
[7]   An Evaluation of Microwave Land Surface Emissivities Over the Continental United States to Benefit GPM-Era Precipitation Algorithms [J].
Ferraro, Ralph R. ;
Peters-Lidard, Christa D. ;
Hernandez, Cecilia ;
Turk, F. Joseph ;
Aires, Filipe ;
Prigent, Catherine ;
Lin, Xin ;
Boukabara, Sid-Ahmed ;
Furuzawa, Fumie A. ;
Gopalan, Kaushik ;
Harrison, Kenneth W. ;
Karbou, Fatima ;
Li, Li ;
Liu, Chuntao ;
Masunaga, Hirohiko ;
Moy, Leslie ;
Ringerud, Sarah ;
Skofronick-Jackson, Gail M. ;
Tian, Yudong ;
Wang, Nai-Yu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01) :378-398
[8]  
Galantowicz JF, 2011, J GEOPHYS RES-ATMOS, V116, DOI [10.1029/2010JD015431, 10.1029/2010J13015431]
[9]   Global land cover classification at 1km spatial resolution using a classification tree approach [J].
Hansen, MC ;
Defries, RS ;
Townshend, JRG ;
Sohlberg, R .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (6-7) :1331-1364
[10]   The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales [J].
Huffman, George J. ;
Adler, Robert F. ;
Bolvin, David T. ;
Gu, Guojun ;
Nelkin, Eric J. ;
Bowman, Kenneth P. ;
Hong, Yang ;
Stocker, Erich F. ;
Wolff, David B. .
JOURNAL OF HYDROMETEOROLOGY, 2007, 8 (01) :38-55