FROM NEWTON TO NAVIER-STOKES, OR HOW TO CONNECT FLUID MECHANICS EQUATIONS FROM MICROSCOPIC TO MACROSCOPIC SCALES

被引:15
作者
Gallagher, Isabelle [1 ,2 ]
机构
[1] Univ Paris Diderot, Sorbonne Paris Cite, Paris, France
[2] Ecole Normale Super Paris, DMA, UMR 8553, Paris, France
关键词
Kinetic equations; fluid dynamics; particle systems; Boltzmann equation; Navier-Stokes equation; Boltzmann-Grad limit; low density limit; LINEAR BOLTZMANN-EQUATION; KINETIC-EQUATIONS; GLOBAL-SOLUTIONS; DYNAMIC LIMITS; RAREFIED-GAS; DERIVATION; PARTICLE; EXISTENCE; MOTION; DIFFUSION;
D O I
10.1090/bull/1650
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this survey we present an overview of some mathematical results concerning the passage from the microscopic description of fluids via Newton's laws to the macroscopic description via the Navier-Stokes equations.
引用
收藏
页码:65 / 85
页数:21
相关论文
共 80 条
[71]   From Boltzmann to Euler: Hilbert's 6th problem revisited [J].
Slemrod, M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (10) :1497-1501
[72]   Hilbert's sixth problem and the failure of the Boltzmann to Euler limit [J].
Slemrod, Marshall .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2118)
[73]  
SPOHN H, 1984, LECT NOTES MATH, V1048, P207
[74]  
Spohn H., 1991, Large Scale Dynamics of Interacting Particles
[75]  
Stokes G.G., 1845, Math. Phys. Pap, V8, P287, DOI [10.1017/CBO9780511702242.005, DOI 10.1017/CBO9780511702242.005]
[76]   EXISTENCE OF GLOBAL SOLUTIONS OF MIXED PROBLEM FOR NONLINEAR BOLTZMANN-EQUATION [J].
UKAI, S .
PROCEEDINGS OF THE JAPAN ACADEMY, 1974, 50 (03) :179-185
[77]   The Boltzmann-Grad limit and Cauchy-Kovalevskaya theorem [J].
Ukai, S .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2001, 18 (02) :383-392
[78]  
UKAI S., 1976, C. R. Acad. Sci. Paris Ser. A-B, V282, pA317
[79]   EQUILIBRIUM TIME CORRELATION-FUNCTIONS IN THE LOW-DENSITY LIMIT [J].
VANBEIJEREN, H ;
LANFORD, OE ;
LEBOWITZ, JL ;
SPOHN, H .
JOURNAL OF STATISTICAL PHYSICS, 1980, 22 (02) :237-257
[80]  
Villani C, 2002, HANDBOOK OF MATHEMATICAL FLUID DYNAMICS, VOL 1, P71, DOI 10.1016/S1874-5792(02)80004-0