FROM NEWTON TO NAVIER-STOKES, OR HOW TO CONNECT FLUID MECHANICS EQUATIONS FROM MICROSCOPIC TO MACROSCOPIC SCALES

被引:15
作者
Gallagher, Isabelle [1 ,2 ]
机构
[1] Univ Paris Diderot, Sorbonne Paris Cite, Paris, France
[2] Ecole Normale Super Paris, DMA, UMR 8553, Paris, France
关键词
Kinetic equations; fluid dynamics; particle systems; Boltzmann equation; Navier-Stokes equation; Boltzmann-Grad limit; low density limit; LINEAR BOLTZMANN-EQUATION; KINETIC-EQUATIONS; GLOBAL-SOLUTIONS; DYNAMIC LIMITS; RAREFIED-GAS; DERIVATION; PARTICLE; EXISTENCE; MOTION; DIFFUSION;
D O I
10.1090/bull/1650
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this survey we present an overview of some mathematical results concerning the passage from the microscopic description of fluids via Newton's laws to the macroscopic description via the Navier-Stokes equations.
引用
收藏
页码:65 / 85
页数:21
相关论文
共 80 条
[51]   THE STATISTICAL MECHANICAL THEORY OF TRANSPORT PROCESSES .1. GENERAL THEORY [J].
KIRKWOOD, JG .
JOURNAL OF CHEMICAL PHYSICS, 1946, 14 (03) :180-201
[52]   Well-posedness for the Navier-Stokes equations [J].
Koch, H ;
Tataru, D .
ADVANCES IN MATHEMATICS, 2001, 157 (01) :22-35
[53]   ON THE INITIAL LAYER AND THE EXISTENCE THEOREM FOR THE NONLINEAR BOLTZMANN-EQUATION [J].
LACHOWICZ, M .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1987, 9 (03) :342-366
[54]   STEADY-STATE SELF-DIFFUSION AT LOW-DENSITY [J].
LEBOWITZ, JL ;
SPOHN, H .
JOURNAL OF STATISTICAL PHYSICS, 1982, 29 (01) :39-55
[55]  
Lemari-Rieusset P-G, 2002, Recent Developments in the NavierStokes Problem, DOI DOI 10.1201/9781420035674
[56]  
LemarieRieusset PG, 2016, NAVIER-STOKES PROBLEM IN THE 21ST CENTURY, P1, DOI 10.1201/b19556
[57]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[58]  
Lions PL, 2001, ARCH RATION MECH AN, V158, P173, DOI 10.1007/s002050100143
[59]   From the Boltzmann equation to the Stokes-Fourier system in a bounded domain [J].
Masmoudi, N ;
Saint-Raymond, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (09) :1263-1293
[60]   A SEMIGROUP APPROACH TO THE JUSTIFICATION OF KINETIC THEORY [J].
Matthies, Karsten ;
Theil, Florian .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (06) :4345-4379