Numerical Simulations of Noisy Variational Quantum Eigensolver Ansatz Circuits

被引:2
|
作者
Gowrishankar, Meenambika [1 ]
Wright, Jerimiah [1 ]
Claudino, Daniel [1 ]
Thien Nguyen [1 ]
McCaskey, Alexander [1 ]
Humble, Travis S. [1 ]
机构
[1] Oak Ridge Natl Lab, Quantum Comp Inst, Oak Ridge, TN 37830 USA
来源
2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021 | 2021年
关键词
variational quantum eigensolver; quantum chemistry; quantum algorithms;
D O I
10.1109/QCE52317.2021.00032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This is a case study of the variational quantum eigensolver (VQE) method using numerical simulations to test the influence of noise on the accuracy of the underlying circuit ansatz. We investigate a computational chemistry application of VQE to calculate the electronic ground state and its energy for Sodium Hydride (NaH), a prototypical two-electron problem. Using a one-parameter ansatz derived from unitary coupled cluster (UCC) theory, we simulate the effects of noise on the energy expectation value and variance with respect to the ansatz parameter. These numerical simulations provide insights into the accuracy of the prepared quantum state and the efficiency of the classical optimizer that iteratively refines the ansatz. We conduct a comparative study between analytical results derived for the UCC ansatz in the absence of noise and the noisy numerical simulation results obtained using an isotropic depolarizing noise model for each gate. We also compare the relative increase in noise on logically equivalent UCC ansatz circuits generated by randomized compiling. Notably, we observe that the intrinsic variance in the energy due to the simplicity of the ansatz itself compares with the noise induced by the bare circuit.
引用
收藏
页码:155 / 159
页数:5
相关论文
共 41 条
  • [1] Numerical simulations of noisy quantum circuits for computational chemistry
    Jerimiah Wright
    Meenambika Gowrishankar
    Daniel Claudino
    Phillip C. Lotshaw
    Thien Nguyen
    Alexander J. McCaskey
    Travis S. Humble
    Materials Theory, 6 (1):
  • [2] Numerical Simulations of Noisy Quantum Circuits for Computational Chemistry
    Gowrishankar, Meenambika
    Wright, Jerimiah
    Claudino, Daniel
    Lotshaw, Phillip
    Thien Nguyen
    McCaskey, Alex
    Humble, Travis
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 813 - 815
  • [3] Variational quantum eigensolver for approximate diagonalization of downfolded Hamiltonians using generalized unitary coupled cluster ansatz
    Nicholas, P. Bauman
    Chladek, Jaroslav
    Veis, Libor
    Pittner, Jiri
    Karol, Kowalski
    QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (03)
  • [4] Practical Quantum Search by Variational Quantum Eigensolver on Noisy Intermediate-scale Quantum Hardware
    Liu, Chen-Yu
    2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, : 397 - 403
  • [5] A Gradient-Cost Multiobjective Alternate Framework for Variational Quantum Eigensolver with Variable Ansatz
    Li, Ze-Tong
    Meng, Fan-Xu
    Zeng, Han
    Gong, Zhai-Rui
    Zhang, Zai-Chen
    Yu, Xu-Tao
    ADVANCED QUANTUM TECHNOLOGIES, 2023, 6 (05)
  • [6] Orbital expansion variational quantum eigensolver
    Wu, Yusen
    Huang, Zigeng
    Sun, Jinzhao
    Yuan, Xiao
    Wang, Jingbo B.
    Lv, Dingshun
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (04)
  • [7] Qubit coupled cluster singles and doubles variational quantum eigensolver ansatz for electronic structure calculations
    Xia, Rongxin
    Kais, Sabre
    QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (01)
  • [8] A non-orthogonal variational quantum eigensolver
    Huggins, William J.
    Lee, Joonho
    Baek, Unpil
    O'Gorman, Bryan
    Whaley, K. Birgitta
    NEW JOURNAL OF PHYSICS, 2020, 22 (07):
  • [9] The Cost of Improving the Precision of the Variational Quantum Eigensolver for Quantum Chemistry
    Mihalikova, Ivana
    Pivoluska, Matej
    Plesch, Martin
    Friak, Martin
    Nagaj, Daniel
    Sob, Mojmir
    NANOMATERIALS, 2022, 12 (02)
  • [10] Qubit unitary coupled cluster with generalized single and paired double excitations ansatz for variational quantum eigensolver
    Xie, Qing-Xing
    Zhang, Wen-gang
    Xu, Xu-Sheng
    Liu, Sheng
    Zhao, Yan
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2022, 122 (24)