One dimensional graphene based photonic crystals: Graphene stacks with sequentially-modulated doping for photonic band gap tailoring

被引:16
作者
Fuentecilla-Carcamo, I. [1 ]
Palomino-Ovando, M. [1 ]
Ramos-Mendieta, F. [2 ]
机构
[1] Benemerita Univ Autonoma Puebla, Fac Ciencias Fisicomatemat, Apartado Postal 1152, Puebla 72000, Puebla, Mexico
[2] Univ Sonora, Dept Invest Fis, Apartado Postal 5-088, Hermosillo 83190, Sonora, Mexico
关键词
Photonic crystals; Graphene; Photonic band gaps; Terahertz; Photonic minibands; Tuning; TERAHERTZ; METAMATERIALS; ABSORBER; GATE;
D O I
10.1016/j.spmi.2017.09.012
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In a periodic arrangement of equally-doped graphene monolayers the electromagnetic wave propagation is described by band theory. We have found that the photonic response of this system enriches when the doping level is sequentially-modulated acquiring periodic, quasi-periodic or harmonic profiles along the superlattice axis. Because the dielectric background that supports the graphene layers is homogeneous, it is the doping modulation superimposed on the graphene layers that produces a particular photonic band structure. We report that the fixed separation between the layers generates a persistent structural band gap which is tunable by gating. We also demonstrate that doping modulations following continuous cosine or semi-continuous square envelope functions give place to frequency mini-bands. In our calculations the doping levels correspond to chemical potentials within the range 0.2 eV < mu < 1.2 eV and the model for the graphene conductivity is valid in the limit of low temperatures in the THz spectrum. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:46 / 56
页数:11
相关论文
共 36 条
[1]   An ultra-broadband multilayered graphene absorber [J].
Amin, Muhammad ;
Farhat, Mohamed ;
Bagci, Hakan .
OPTICS EXPRESS, 2013, 21 (24) :29938-29948
[2]   Terahertz transverse-electric- and transverse-magnetic-polarized waves localized on graphene in photonic crystals [J].
Averkov, Yu. O. ;
Yakovenko, V. M. ;
Yampol'skii, V. A. ;
Nori, Franco .
PHYSICAL REVIEW B, 2014, 90 (04)
[3]   Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption [J].
Batrakov, K. ;
Kuzhir, P. ;
Maksimenko, S. ;
Paddubskaya, A. ;
Voronovich, S. ;
Lambin, Ph ;
Kaplas, T. ;
Svirko, Yu .
SCIENTIFIC REPORTS, 2014, 4
[4]   Graphene Conductance Uniformity Mapping [J].
Buron, Jonas D. ;
Petersen, Dirch H. ;
Boggild, Peter ;
Cooke, David G. ;
Hilke, Michael ;
Sun, Jie ;
Whiteway, Eric ;
Nielsen, Peter F. ;
Hansen, Ole ;
Yurgens, August ;
Jepsen, Peter U. .
NANO LETTERS, 2012, 12 (10) :5074-5081
[5]  
Caipa C. S. R., 2012, PHYS REV B, V85
[6]   Metamaterials in multilayer graphene photonics: Control of negative refraction [J].
Da, Haixia ;
Yan, Xiaohong .
CARBON, 2016, 100 :74-80
[7]   Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities [J].
Efetov, Dmitri K. ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2010, 105 (25)
[8]   Optical properties of a defective one-dimensional photonic crystal containing graphene nanaolayers [J].
Entezar, S. Roshan ;
Saleki, Z. ;
Madani, A. .
PHYSICA B-CONDENSED MATTER, 2015, 478 :122-126
[9]   Optical far-infrared properties of a graphene monolayer and multilayer [J].
Falkovsky, L. A. ;
Pershoguba, S. S. .
PHYSICAL REVIEW B, 2007, 76 (15)
[10]   Self-biased reconfigurable graphene stacks for terahertz plasmonics [J].
Gomez-Diaz, J. S. ;
Moldovan, C. ;
Capdevila, S. ;
Romeu, J. ;
Bernard, L. S. ;
Magrez, A. ;
Ionescu, A. M. ;
Perruisseau-Carrier, J. .
NATURE COMMUNICATIONS, 2015, 6