Parallel algorithm combined with mixed element procedure for compressible miscible displacement problem

被引:1
作者
Zhang, Jiansong [1 ]
Yang, Danping [2 ]
Guo, Hui [3 ]
Qu, Yan [4 ]
机构
[1] China Univ Petr, Dept Appl Math, Qingdao 266580, Peoples R China
[2] China Normal Univ, Dept Math, 3663 Zhongshan North Rd, Shanghai 200062, Peoples R China
[3] China Univ Petr, Dept Computat Math, Qingdao 266580, Peoples R China
[4] China Univ Petr, Coll Chem Engn, Qingdao 266580, Peoples R China
关键词
Parallel subspace correction; Mixed finite element; Splitting system; Compressible miscible displacement; DOMAIN DECOMPOSITION PROCEDURES; 2-PHASE INCOMPRESSIBLE-FLOW; FINITE-ELEMENT; ITERATIVE METHODS; APPROXIMATION;
D O I
10.1007/s11075-017-0294-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on overlapping domain decomposition, we construct a parallel mixed finite element algorithm for solving the compressible miscible displacement problem in porous media. The algorithm is fully parallel. We consider the relation between the convergence rate and discretization parameters, including the overlapping degree of the subspaces. We give the corresponding error estimate, which tells us that only two iterations are needed to reach to given accuracy at each time level. Numerical results are presented to confirm our theoretical analysis.
引用
收藏
页码:993 / 1019
页数:27
相关论文
共 50 条
[41]   Two-grid method for miscible displacement problem by mixed finite element methods and finite element method of characteristics [J].
Hu, Hanzhang ;
Chen, Yanping ;
Zhou, Jie .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (11) :2694-2715
[42]   A two-grid method for characteristic expanded mixed finite element solution of miscible displacement problem [J].
Hu, Hanzhang ;
Chen, Yanping .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2020, 27 (03)
[43]   A Multipoint Flux Mixed Finite Element Method for Darcy-Forchheimer Incompressible Miscible Displacement Problem [J].
Xu, Wenwen ;
Liang, Dong ;
Rui, Hongxing ;
Li, Xindong .
JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
[44]   New analysis and recovery technique of mixed FEMs for compressible miscible displacement in porous media [J].
Sun, Weiwei .
NUMERISCHE MATHEMATIK, 2022, 150 (01) :179-215
[45]   A characteristic expanded mixed finite element numerical method for incompressible miscible displacement problem involving dispersion term [J].
Hu, Hanzhang .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (09)
[46]   Multi-Point Flux MFE Decoupled Method for Compressible Miscible Displacement Problem [J].
Xu, Wenwen ;
Guo, Hong ;
Li, Xindong ;
Ren, Yongqiang .
PROCESSES, 2023, 11 (04)
[47]   A characteristic block-centered finite difference method for Darcy-Forchheimer compressible miscible displacement problem [J].
Li, Ao ;
Huang, Jian ;
Liu, Wei ;
Wei, Huayi ;
Yi, Nianyu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 413
[48]   A multipoint flux mixed finite element method with mass-conservative characteristic finite element method for incompressible miscible displacement problem [J].
Li, Xindong ;
Du, Mingyang ;
Xu, Wenwen .
NUMERICAL ALGORITHMS, 2023, 93 (04) :1795-1810
[49]   Characteristic mixed volume element for compressible two-phase displacement in porous media [J].
Li, Changfeng ;
Yuan, Yirang ;
Yang, Qing .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (11) :2233-2250
[50]   Two-grid method for miscible displacement problem with dispersion by finite element method of characteristics [J].
Chen, Yanping ;
Hu, Hanzhang .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (03)