The Ras/PKA signaling pathway may control RNA polymerase II elongation via the spt4p/spt5p complex in Saccharomyces cerevisiae

被引:0
作者
Howard, SC [1 ]
Hester, A [1 ]
Herman, PK [1 ]
机构
[1] Ohio State Univ, Dept Mol Genet, Columbus, OH 43210 USA
关键词
D O I
暂无
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The Ras signaling pathway in Saccharomyces cerevisiae controls cell growth via the cAMP-dependent protein kinase, PKA. Recent work has indicated that these effects on growth are due, in part, to the regulation of activities associated with the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. However, the precise target of these Ras effects has remained unknown. This study suggests that Ras/PKA activity regulates the elongation step of the RNA polymerase II transcription process. Several lines of evidence indicate that Spt5p in the Spt4p/Spt5p elongation factor is the likely target of this control. First, the growth of spt4 and spt5 mutants was found to be very sensitive to changes in Ras/PKA signaling activity. Second, mutants with elevated levels of Ras activity shared a number of specific phenotypes with spt5 mutants and vice versa. Finally, Spt5p was efficiently phosphorylated by PKA in vitro. Altogether, the data suggest that the Ras/PKA pathway might be directly targeting a component of the elongating polymerase complex and that this regulation is important for the normal control of yeast cell growth. These data point out the interesting possibility that signal transduction pathways might directly influence the elongation step of RNA polymerase II transcription.
引用
收藏
页码:1059 / 1070
页数:12
相关论文
共 79 条
[1]   EXTENSIVE HOMOLOGY AMONG THE LARGEST SUBUNITS OF EUKARYOTIC AND PROKARYOTIC RNA-POLYMERASES [J].
ALLISON, LA ;
MOYLE, M ;
SHALES, M ;
INGLES, CJ .
CELL, 1985, 42 (02) :599-610
[2]   High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo:: roles in promoter proximal pausing and transcription elongation [J].
Andrulis, ED ;
Guzmán, E ;
Döring, P ;
Werner, J ;
Lis, JT .
GENES & DEVELOPMENT, 2000, 14 (20) :2635-2649
[3]   GENETIC INTERACTION BETWEEN TRANSCRIPTION ELONGATION-FACTOR TFIIS AND RNA POLYMERASE-II [J].
ARCHAMBAULT, J ;
LACROUTE, F ;
RUET, A ;
FRIESEN, JD .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (09) :4142-4152
[4]  
Ausubel FM, 1995, CURRENT PROTOCOLS MO
[5]   BLOCKING OF TAT-DEPENDENT HIV-1 RNA MODIFICATION BY AN INHIBITOR OF RNA POLYMERASE-II PROCESSIVITY [J].
BRADDOCK, M ;
THORBURN, AM ;
KINGSMAN, AJ ;
KINGSMAN, SM .
NATURE, 1991, 350 (6317) :439-441
[6]   RAS GENES IN SACCHAROMYCES-CEREVISIAE - SIGNAL TRANSDUCTION IN SEARCH OF A PATHWAY [J].
BROACH, JR .
TRENDS IN GENETICS, 1991, 7 (01) :28-33
[7]   DIFFERENTIAL ACTIVATION OF YEAST ADENYLATE-CYCLASE BY WILD-TYPE AND MUTANT RAS PROTEINS [J].
BROEK, D ;
SAMIY, N ;
FASANO, O ;
FUJIYAMA, A ;
TAMANOI, F ;
NORTHUP, J ;
WIGLER, M .
CELL, 1985, 41 (03) :763-769
[8]  
Chang YW, 2001, GENETICS, V157, P17
[9]   THE SACCHAROMYCES-CEREVISIAE MET3 GENE - NUCLEOTIDE-SEQUENCE AND RELATIONSHIP OF THE 5' NONCODING REGION TO THAT OF MET25 [J].
CHEREST, H ;
KERJAN, P ;
SURDINKERJAN, Y .
MOLECULAR & GENERAL GENETICS, 1987, 210 (02) :307-313
[10]   Transcription elongation and human disease [J].
Conaway, JW ;
Conaway, RC .
ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 :301-319