Lateral III-V Nanowire MOSFETs in Low-Noise Amplifier Stages

被引:5
作者
Andric, Stefan [1 ,2 ]
Lindelow, Fredrik [1 ,3 ]
Fhager, Lars Ohlsson [1 ]
Lind, Erik [1 ]
Wernersson, Lars-Erik [1 ]
机构
[1] Lund Univ, Dept Elect & Informat Technol, S-22100 Lund, Sweden
[2] Acconeer AB, S-21177 Malmo, Sweden
[3] Eolus Vind AB, S-28121 Hassleholm, Sweden
基金
欧盟地平线“2020”;
关键词
MOSFET; Logic gates; Radio frequency; Semiconductor device modeling; Photomicrography; Dielectrics; Parasitic capacitance; Back-end-of-line (BEOL); capacitance modeling; front-end-of-line (FEOL); InGaAs; lateral; LNA; nanowire (NW); NW circuits; III-V; TRANSISTORS; INP;
D O I
10.1109/TMTT.2021.3124088
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lateral III-V nanowire (NW) MOSFETs are a promising candidate for high-frequency electronics. However, their circuit performance is not yet assessed. Here, we integrate lateral nanowires (LNWs) in a circuit environment and characterize the transistors and amplifiers. MOSFETs are fabricated in a simple scheme with a dc transconductance of up to 1.3 mS/mu m, ON-resistance down to 265 omega center dot mu m, and cutoff frequencies up to 250 GHz, measured on the circuit level. The circuit model estimates 25% device parasitic capacitance increase due to back-end-of-line (BEOL) dielectric cladding. A low-noise amplifier input stage is designed with optimum network design for a noise matched input and an inductive peaking output. The input stage shows up to 4-dB gain and 2.5-dB noise figure (NF), at 60 GHz. Utilizing gate-length scaling in the circuit environment, the obtained normalized intrinsic gate capacitance value of 0.34-aF/nm gate length, per NW, corresponds well to the predicted theoretical value, demonstrating the circuit's ability to provide intrinsic device parameters. This is the first mm-wave validation of noise models for III-V LNW MOSFETs. The results demonstrate the potential for utilization of the technology platform for low-noise applications.
引用
收藏
页码:1284 / 1291
页数:8
相关论文
共 35 条
[1]   Low-temperature back-end-of-line technology compatible with III-V nanowire MOSFETs [J].
Andric, Stefan ;
Fhager, Lars Ohlsson ;
Lindelow, Fredrik ;
Kilpi, Olli-Pekka ;
Wernersson, Lars-Erik .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2019, 37 (06)
[2]   Low-Temperature Front-Side BEOL Technology with Circuit Level Multiline Thru-Reflect-Line Kit for III-V MOSFETs on Silicon [J].
Andric, Stefan ;
Ohlsson, Lars ;
Wernersson, Lars-Erik .
2019 92ND ARFTG MICROWAVE MEASUREMENT CONFERENCE (ARFTG), 2019,
[3]  
[Anonymous], 1950, J. Franklin Inst., DOI DOI 10.1016/0016-0032(50)90006-8
[4]  
[Anonymous], 2020, R S ZVA67 B16 DIRECT
[5]   INFLUENCE OF IMPACT IONIZATION ON THE DRAIN CONDUCTANCE IN INAS-ALSB QUANTUM-WELL HETEROSTRUCTURE FIELD-EFFECT TRANSISTORS [J].
BRAR, B ;
KROEMER, H .
IEEE ELECTRON DEVICE LETTERS, 1995, 16 (12) :548-550
[6]   BENZOCYCLOBUTENE (BCB) DIELECTRICS FOR THE FABRICATION OF HIGH-DENSITY, THIN-FILM MULTICHIP MODULES [J].
BURDEAUX, D ;
TOWNSEND, P ;
CARR, J ;
GARROU, P .
JOURNAL OF ELECTRONIC MATERIALS, 1990, 19 (12) :1357-1364
[7]   InAs Thin-Channel High-Electron-Mobility Transistors with Very High Current-Gain Cutoff Frequency for Emerging Submillimeter-Wave Applications [J].
Chang, Edward-Yi ;
Kuo, Chien-I ;
Hsu, Heng-Tung ;
Chiang, Che-Yang ;
Miyamoto, Yasuyuki .
APPLIED PHYSICS EXPRESS, 2013, 6 (03)
[8]  
Cohen E., 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), P207, DOI 10.1109/RFIC.2012.6242265
[9]  
Colinge JP, 2010, NAT NANOTECHNOL, V5, P225, DOI [10.1038/nnano.2010.15, 10.1038/NNANO.2010.15]
[10]   Closed-Form Solutions for the Design of Optimum Matching Networks [J].
Dawson, Dale E. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2009, 57 (01) :121-129