Slope-changing solutions of elliptic problems on Rn

被引:16
作者
Bessi, Ugo [1 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
关键词
D O I
10.1016/j.na.2007.04.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem -Delta u + Fu(x, u) = 0 on R-n, where F is a smooth function periodic of period I in all its variables. We are going to find a non-degeneracy condition on F for which the following holds. If we are given a sequence of positive integers {(N) over tilde (i)}(i epsilon Z) and a sequence {alpha(i)}(i epsilon Z) of real numbers (the slopes), then we shall find an increasing sequence {Q(i)} of integers and a solution u which is entire, periodic in (x(2), . . . , x(n)) and which is close to the plane alpha(1)(x(1) - Q(i)) + u(Q(i), 0, . . . , 0) for x(1) epsilon [Q(i), Q(i) + (N) over tilde (i)]. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3923 / 3947
页数:25
相关论文
共 16 条
[1]   On a long-standing conjecture of E.!De Giorgi:: Symmetry in 3D for general nonlinearities and a local minimality property [J].
Alberti, G ;
Ambrosio, L ;
Cabré, X .
ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) :9-33
[2]  
Alessio F, 2000, CALC VAR PARTIAL DIF, V11, P177, DOI 10.1007/s005260000036
[3]  
ALESSIO F, 1998, ANN SCUOLA NORM SU S, V27, P47
[4]   THE DISCRETE FRENKEL-KONTOROVA MODEL AND ITS EXTENSIONS .1. EXACT RESULTS FOR THE GROUND-STATES [J].
AUBRY, S ;
LEDAERON, PY .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 8 (03) :381-422
[5]  
BANGERT V, 1989, ANN I H POINCARE-AN, V6, P95
[6]   Connecting orbits of time dependent Lagrangian systems [J].
Bernard, P .
ANNALES DE L INSTITUT FOURIER, 2002, 52 (05) :1533-+
[8]   A NEW PROOF OF THE AUBRY-MATHER THEOREM [J].
GOLE, C .
MATHEMATISCHE ZEITSCHRIFT, 1992, 210 (03) :441-448
[9]  
Matano H, 2006, J EUR MATH SOC, V8, P355
[10]  
Mather J., 1991, J. Amer. Math. Soc, V4, P207