Tornado Occurrences in the United States: A Spatio-Temporal Point Process Approach

被引:12
|
作者
Valente, Fernanda [1 ]
Laurini, Marcio [1 ]
机构
[1] FEARP USP, Av Bandeirantes,3900 Vila Monte Alegre, BR-14040905 Ribeirao Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Spatial Point Process; Log Gaussian Cox Process; tornado occurrences; MODELS; CLIMATOLOGY; INFERENCE; WIDTH;
D O I
10.3390/econometrics8020025
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we analyze the tornado occurrences in the Unites States. To perform inference procedures for the spatio-temporal point process we adopt a dynamic representation of Log-Gaussian Cox Process. This representation is based on the decomposition of intensity function in components of trend, cycles, and spatial effects. In this model, spatial effects are also represented by a dynamic functional structure, which allows analyzing the possible changes in the spatio-temporal distribution of the occurrence of tornadoes due to possible changes in climate patterns. The model was estimated using Bayesian inference through the Integrated Nested Laplace Approximations. We use data from the Storm Prediction Center's Severe Weather Database between 1954 and 2018, and the results provided evidence, from new perspectives, that trends in annual tornado occurrences in the United States have remained relatively constant, supporting previously reported findings.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [31] A New Spatio-Temporal Neural Network Approach for Traffic Accident Forecasting
    de Medrano, Rodrigo
    Aznarte, Jose L.
    APPLIED ARTIFICIAL INTELLIGENCE, 2021, 35 (10) : 782 - 801
  • [32] Spatio-temporal analysis of plant pests in a greenhouse using a Bayesian approach
    Poncet, Christine
    Lemesle, Valerie
    Mailleret, Ludovic
    Bout, Alexandre
    Boll, Roger
    Vaglio, Joelle
    AGRICULTURAL AND FOREST ENTOMOLOGY, 2010, 12 (03) : 325 - 332
  • [33] spateGAN: Spatio-Temporal Downscaling of Rainfall Fields Using a cGAN Approach
    Glawion, Luca
    Polz, Julius
    Kunstmann, Harald
    Fersch, Benjamin
    Chwala, Christian
    EARTH AND SPACE SCIENCE, 2023, 10 (10)
  • [34] Spatio-Temporal Instrumental Variables Regression with Missing Data: A Bayesian Approach
    Nascimento, Marcus L.
    Goncalves, Kelly C. M.
    Mendonca, Mario Jorge
    COMPUTATIONAL ECONOMICS, 2023, 62 (01) : 29 - 47
  • [35] Student's-t process with spatial deformation for spatio-temporal data
    Castro Morales, Fidel Ernesto
    Politis, Dimitris N.
    Leskow, Jacek
    Paez, Marina Silva
    STATISTICAL METHODS AND APPLICATIONS, 2022, 31 (05) : 1099 - 1126
  • [36] Gaussian process modelling for bicoid mRNA regulation in spatio-temporal Bicoid profile
    Liu, Wei
    Niranjan, Mahesan
    BIOINFORMATICS, 2012, 28 (03) : 366 - 372
  • [37] Significance tests for covariate-dependent trends in inhomogeneous spatio-temporal point processes
    Diaz-Avalos, Carlos
    Juan, P.
    Mateu, J.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2014, 28 (03) : 593 - 609
  • [38] A kernel-enriched order-dependent nonparametric spatio-temporal process
    Das, Moumita
    Bhattacharya, Sourabh
    SPATIAL STATISTICS, 2023, 55
  • [39] Deep Mixture Point Processes: Spatio-temporal Event Prediction with Rich Contextual Information
    Okawa, Maya
    Iwata, Tomoharu
    Kurashima, Takeshi
    Tanaka, Yusuke
    Toda, Hiroyuki
    Ueda, Naonori
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 373 - 383
  • [40] Anomaly Detection in Species Distribution Patterns: A Spatio-Temporal Approach for Biodiversity Conservation
    He, Mingyang
    Chen, Hao
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2024, 18 (01) : 39 - 50