Effect of arbuscular mycorrhizae and induced drought stress on antioxidant enzyme and nitrate reductase activities in Juniperus oxycedrus L. grown in a composted sewage sludge-amended semi-arid soil

被引:25
作者
Alguacil, M
Caravaca, F
Díaz-Vivancos, P
Hernández, JA
Roldán, A
机构
[1] CSIC, Ctr Edafol & Biol Aplicada Segura, Dept Soil & Water Conservat, Murcia 30100, Spain
[2] CSIC, Ctr Edafol & Biol Aplicada Segura, Dept Plant Breeding & Physiol, Murcia 30100, Spain
关键词
arbuscular mycorrhizal fungi; drought stress; nitrate reductase; peroxidase; sewage sludge; superoxide dismutase;
D O I
10.1007/s11104-005-1238-3
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
We studied the influence of inoculation with a mixture of three exotic arbuscular mycorrhizal (AM) fungi, Glomus intraradices Schenck & Smith, Glomus deserticola Trappe, Bloss. & Menge and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe, and the addition of composted sewage sludge (SS) on the activities of the antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidase (POX) and of shoot and root nitrate reductase (NR, EC 1.6.6.1) in Juniperus oxycedrus L. seedlings, an evergreen shrub, grown in a non-sterile soil under well-watered and drought-stress conditions. Both the inoculation with exotic AM fungi and the addition of composted SS stimulated significantly growth and the N and P contents in shoot tissues of J. oxycedrus with respect to the plants neither inoculated nor treated with composted SS that were either well-watered or droughted. Under drought-stress conditions, only inoculation with exotic AM fungi increased shoot and root NR activity (about 188% and 38%, respectively, with respect to the plants neither inoculated nor treated with composted SS). Drought increased the POX and SOD activities in both shoots of J. oxycedrus seedlings inoculated with exotic AM fungi and grown with composted SS, but the increase was less than in the plants neither inoculated nor treated with SS. Both the plants inoculated with exotic AM fungi and the plants grown with composted SS developed additional mechanisms to avoid oxidative damage produced under water-shortage conditions.
引用
收藏
页码:209 / 218
页数:10
相关论文
共 41 条